Dubbo 在 Proxyless Mesh 模式下的探索与改进

本文涉及的产品
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
注册配置 MSE Nacos/ZooKeeper,118元/月
性能测试 PTS,5000VUM额度
简介: Dubbo 在 Proxyless Mesh 模式下的探索与改进

01 背景


随着 Docker 和 Kubernetes 的出现,一个庞大的单体应用可以被拆分成多个独立部署的微服务,并被打包运行于对应的容器中。不同应用之间相互通信,以共同完成某一功能模块。微服务架构与容器化部署带来的好处是显而易见的,它降低了服务间的耦合性,利于开发和维护,能更有效地利用计算资源。当然,微服务架构也存在相应的缺点:


  • 强依赖于SDK,业务模块与治理模块耦合较为严重。除了相关依赖,往往还需要在业务代码中嵌入SDK代码或配置。
  • 统一治理难。每次框架升级都需要修改 SDK 版本,并重新进行回归测试,确认功能正常后再对每一台机器重新部署上线。不同服务引用的 SDK 版本不统一、能力参差不齐,增大了统一治理的难度。
  • 缺少一套统一解决方案。目前市场不存在一整套功能完善、无死角的微服务治理与解决方案。在实际生产环境往往还需要引入多个治理组件来完成像灰度发布、故障注入等功能。


为解决这些痛点,Service Mesh诞生了。以经典的side car模式为例,它通过在业务 Pod 中注入 Sidecar 容器,对代理流量实施治理和管控,将框架的治理能力下层到 side car 容器中,与业务系统解耦,从而轻松实现多语言、多协议的统一流量管控、监控等需求。通过剥离 SDK 能力并拆解为独立进程,从而解决了强依赖于 SDK 的问题,从而使开发人员可以更加专注于业务本身,实现了基础框架能力的下沉,如下图所示(源自dubbo官网):

image.png

经典的 Sidecar Mesh 部署架构有很多优势,如减少 SDK 耦合、业务侵入小等,但增加了一层代理,也带来了一些额外的问题,比如:


  • SideCar 代理会损耗一部分性能,当网络结构层级比较复杂时尤其明显,对性能要求很高的业务造成了一定的困扰。
  • 架构更加复杂,对运维人员要求高。
  • 对部署环境有一定的要求,需要其能支持SideCar代理的运行。


为解决这些痛点,Proxyless Service Mesh 模式诞生了。传统服务网格通过代理的方式拦截所有的业务网络流量,代理需要感知到控制平面下发的配置资源,从而按照要求控制网络流量的走向。以istio为例,Proxyless 模式是指应用直接与负责控制平面的istiod进程通信,istiod进程通过监听并获取k8s的资源,例如Service、Endpoint等,并将这些资源统一通过 xds 协议下发到不同的rpc框架,由rpc框架进行请求转发,从而实现服务发现和服务治理等能力。


Dubbo社区是国内最早开始对Proxyless Service Mesh模式进行探索的社区,这是由于相比于 Service Mesh,Proxyless模式落地成本较低,对于中小企业来说是一个较好的选择。Dubbo 在3.1 版本中通过对xds协议进行解析,新增了对 Proxyless 的支持。Xds是一类发现服务的总称,应用通过xds api可以动态获取Listener(监听器),Route(路由), Cluster(集群), Endpoint(集群成员)以及Secret(证书)配置。

image.png

通过 Proxyless 模式,Dubbo 与 Control Plane直接建立通信,进而实现控制面对流量管控、服务治理、可观测性、安全等的统一管控,从而规避 Sidecar 模式带来的性能损耗与部署架构复杂性。


02 Dubbo Xds 推送机制详解


@startuml
' ========调整样式=============
' 单个状态定义示例:state 未提交 #70CFF5 ##Black
' hide footbox 可关闭时序图下面部分的模块
' autoactivate on 是否自动激活
skinparam sequence {
ArrowColor black
LifeLineBorderColor black
LifeLineBackgroundColor #70CFF5
ParticipantBorderColor #black
ParticipantBackgroundColor  #70CFF5
}
' ========定义流程=============
activate ControlPlane
activate DubboRegistry
autonumber 1
ControlPlane <-> DubboRegistry : config pull and push
activate XdsServiceDiscoveryFactory
activate XdsServiceDiscovery
activate PilotExchanger
DubboRegistry -> XdsServiceDiscoveryFactory : request
XdsServiceDiscoveryFactory --> DubboRegistry: get registry configuration
XdsServiceDiscoveryFactory -> XdsChannel: 返回列表信息(若数据没有导入完成,则不可见)
XdsServiceDiscoveryFactory-> XdsServiceDiscovery: init Xds service discovery
XdsServiceDiscovery-> PilotExchanger: init PilotExchanger
alt PilotExchanger
  PilotExchanger -> XdsChannel: 初始化XdsChannel
  XdsChannel --> PilotExchanger: return
  PilotExchanger -> PilotExchanger: get cert pair
  PilotExchanger -> PilotExchanger: int ldsProtocol
  PilotExchanger -> PilotExchanger: int rdsProtocol
  PilotExchanger -> PilotExchanger: int edsProtocol
end
alt PilotExchanger
  XdsServiceDiscovery --> XdsServiceDiscovery: 解析Xds协议
  XdsServiceDiscovery --> XdsServiceDiscovery: 根据Eds初始化节点信息
  XdsServiceDiscovery --> XdsServiceDiscovery: 将Rds、Cds的的负载均衡和路由规则写入结点的运行信息中
  XdsServiceDiscovery --> XdsServiceDiscovery: 回传给服务自省框架,构建invoker
end
deactivate ControlPlane
deactivate XdsServiceDiscovery
deactivate XdsServiceDiscoveryFactory
@enduml

image.png

从整体上看,istio control plane和dubbo的交互时序图如上。Dubbo 里xds处理的主要逻辑在 PilotExchanger 和各个DS(LDS、RDS、CDS、EDS)的对应协议的具体实现里。PilotExchanger统一负责串联逻辑,主要有三大逻辑:


  • 获取授信证书。
  • 调用不同 protocol 的 getResource 获取资源。
  • 调用不同 protocol 的 observeResource 方法监听资源变更。


例如对于lds和rds,PilotExchanger 会调用 lds 的 getResource 方法与 istio 建立通信连接,发送数据并解析来自istio的响应,解析完成后的resource资源会作为rds调用getResource方法的入参,并由rds发送数据给istio。当lds发生变更时,则由lds的observeResource方法去触发自身与 rds 的变更。上述关系对于rds和eds同样如此。现有交互如下,上述过程对应图里红线的流程:

image.png

在第一次成功获取资源之后,各个 DS 会通过定时任务去不断发送请求给 istio,并解析响应结果和保持与 istio 之间的交互,进而实现控制面对流量管控、服务治理、可观测性方面的管控,其流程对应上图蓝线部分。


03 当前 Dubbo Proxyless 实现存在的不足

Dubbo Proxyless模式经过验证之后,已经证明了其可靠性。现有dubbo proxyless的实现方案存在以下问题:


  • 目前与istio交互的逻辑是推送模式。getResource和observeResource是两条不同的stream流,每次发送新请求都需要重新建立连接。但我们建立的stream流是双向流动的,istio在监听到资源变化后由主动推送即可,LDS、RDS、EDS分别只需要维护一条stream流。
  • Stream流模式改为建立持久化连接之后,需要设计一个本地的缓存池,去存储已经存在的资源。当istio主动推送更新后,需要去刷新缓存池的数据。
  • 现有observeResource逻辑是通过定时任务去轮询istio。现在observeResource不再需要定时去轮询,只需要将需要监听的资源加入到缓存池,等istio自动推送即可,且istio推送回来的数据需要按照app切分好,实现多点监听,后续dubbo支持其他DS模式,也可复用相应的逻辑。
  • 目前由istio托管的dubbo应用在istio掉线后会抛出异常,断线后无法重新连接,只能重新部署应用,增加了运维和管理的复杂度。我们需增加断线重连的功能,等istio恢复正常后无需重新部署即可重连。


改造完成后的交互逻辑:

image.png


04 Xds 监听模式实现方案


4.1 资源缓存池

目前Dubbo的资源类型有LDS,RDS,EDS。对于同一个进程,三种资源监听的所有资源都与 istio 对该进程所缓存的资源监听列表一一对应。因此针对这三种资源,我们应该设计分别对应的本地的资源缓存池,dubbo 尝试资源的时候先去缓存池查询,若有结果则直接返回;否则将本地缓存池的资源列表与想要发送的资源聚合后,发送给istio让其更新自身的监听列表。缓存池如下,其中key代表单个资源,T为不同DS的返回结果:


protected Map<String, T> resourcesMap = new ConcurrentHashMap<>();


有了缓存池我们必须有一个监听缓存池的结构或者容器,在这里我们设计为Map的形式,如下:


protected Map<Set<String>, List<Consumer<Map<String, T>>>> consumerObserveMap = new ConcurrentHashMap<>();


其中key为想要监听的资源,value为一个List, 之所以设计为List是为了可以支持重复订阅。List存储的item为jdk8中的Consumer类型,它可以用于传递一个函数或者行为,其入参为Map,其key对应所要监听的单个资源,便于从缓存池中获取。如上文所述,PilotExchanger负责串联整个流程,不同DS之间的更新关系可以用Consumer进行传递。以监听LDS observeResource为例,  大致代码如下:


// 监听
void observeResource(Set<String> resourceNames, Consumer<Map<String, T>> consumer, boolean isReConnect);
// Observe LDS updated
ldsProtocol.observeResource(ldsResourcesName, (newListener) -> {
    // LDS数据不一致
    if (!newListener.equals(listenerResult)) {
        //更新LDS数据
        this.listenerResult = newListener;
        // 触发RDS监听
        if (isRdsObserve.get()) {
            createRouteObserve();
        }
    }
}, false);


Stream流模式改为建立持久化连接之后,我们也需要把这个Consumer的行为存储在本地的缓存池中。Istio收到来自dubbo的推送请求后,刷新自身缓存的资源列表并返回响应。此时istio返回的响应内容是聚合后的结果,Dubbo收到响应后,将响应资源拆分为更小的资源粒度,再推送给对应的 Dubbo应用通知其进行变更。


踩坑点

  • istio推送的数据可能为空字符串,此时缓存池子无需存储,直接跳过即可。否则dubbo会绕过缓冲池,不断向istio发送请求。
  • 考虑以下场景,dubbo应用同时订阅了两个接口,分别由app1和app2提供。为避免监听之间的相互覆盖,因此向istio发送数据时,需要聚合所有监听的资源名一次性发起。


4.2 多点独立监听

在第一次向istio发送请求时会调用getResource方法先去cache查询,缺失了再聚合数据去istio请求数据,istio再返回相应的结果给dubbo。我们处理istio的响应有两种实现方案:


1. 由用户在getResource方案中new 一个completeFuture,由cache分析是否是需要的数据,若确认是新数据则由该future回调传递结果。

2. getResource建立资源的监听器consumerObserveMap,定义一个consumer并把取到的数据同步到原来的线程,cache 收到来自istio的推送后会做两件事:将数据推送所有监听器和将数据发送给该资源的监听器。


以上两种方案都能实现,但最大的区别就是用户调用onNext发送数据给istio的时候需不需要感知getResource 的存在。综上,最终选择方案2进行实现。具体实现逻辑是让dubbo与istio建立连接后,istio会推送自身监听到资源列表给dubbo,dubbo解析响应,并根据监听的不同app切分数据,并刷新本地缓存池的数据,并发送ACK响应给istio,大致流程如下:


@startuml
object Car
object Bus
object Tire
object Engine
object Driver
Car <|- Bus
Car *-down- Tire
Car *-down- Engine
Bus o-down- Driver
@enduml


image.png

部分关键代码如下:


public class ResponseObserver implements XXX {
        ...
        public void onNext(DiscoveryResponse value) {
            //接受来自istio的数据并切分
            Map<String, T> newResult = decodeDiscoveryResponse(value);
            //本地缓存池数据
            Map<String, T> oldResource = resourcesMap;
            //刷新缓存池数据
            discoveryResponseListener(oldResource, newResult);
            resourcesMap = newResult;
            // for ACK
            requestObserver.onNext(buildDiscoveryRequest(Collections.emptySet(), value));
        }
        ...
        public void discoveryResponseListener(Map<String, T> oldResult, 
                                              Map<String, T> newResult) {
            ....
        }  
}
//具体实现交由LDS、RDS、EDS自身
protected abstract Map<String, T> decodeDiscoveryResponse(DiscoveryResponse response){
  //比对新数据和缓存池的资源,并将不同时存在于两种池子的资源取出
    ...
    for (Map.Entry<Set<String>, List<Consumer<Map<String, T>>>> entry : consumerObserveMap.entrySet()) {
    // 本地缓存池不存在则跳过
    ...
  //聚合资源
    Map<String, T> dsResultMap = entry.getKey()
        .stream()
        .collect(Collectors.toMap(k -> k, v -> newResult.get(v)));
    //刷新缓存池数据
    entry.getValue().forEach(o -> o.accept(dsResultMap));
    }
}


▧踩坑点

  • 原本多个stream流的情况下,会用递增的requestId来复用stream流,改成持久化连接之后,一种resource会有多个requestid,可能会相互覆盖,因此必须去掉这个机制。
  • 初始实现方案并没有对资源进行切分,而是一把梭,考虑到后续对其他DS的支持,对istio返回的数据进行切分,也导致consumerObserveMap有点奇形怪状。
  • 三种DS在发送数据时可以共享同一channel,但监听所用到的必须是同一channel,否则数据变更时istio不会进行推送。
  • 建立双向stream流之后,初始方案future为全局共享。但可能有这样的场景:相同的ds两次相邻时间的onNext事件,记为A事件和B事件,可能是A事件先发送,B随后;但可能是B事件的结果先返回,不确定istio推送的时间,因此future必须是局部变量而不是全局共享。


4.3 采用读写锁避免并发冲突

监听器consumerObserveMap和缓存池resourcesMap均可能产生并发冲突。对于resourcemap,由于put操作都集中在getResource方法,因此可以采用悲观锁就能锁住相应的资源,避免资源的并发监听。


对于consumerObserveMap,同时存在put、remove和遍历操作,从时序上,采用读写锁可规避冲突,对于遍历操作加读锁,对于put和remove操作加写锁,即可避免并发冲突。综上,resourcesMap加悲观锁即可,consumerObserveMap涉及的操作场景如下:

  • 远程请求istio时候会往consumerObserveMap新增数据,加写锁。
  • CompleteFuture跨线程返回数据后,去掉监听future,加写锁。
  • 监听缓存池时会往consumerObserveMap新增监听,加写锁。
  • 断线重连时会往consumerObserveMap新增监听,加写锁。
  • 解析istio返回的数据,遍历缓存池并刷新数据,加读锁。


▧踩坑点

  • 由于dubbo和istio建立的是是双向stream流,相同的ds两次相邻时间的onNext事件,记为A事件和B事件,可能是A事件先发送,B随后;但可能是B事件的结果先返回,不确定istio推送的时间。因此需要加锁。


4.4 断线重连

断线重连只需要用定时任务去定时与istio交互,尝试获取授信证书,证书获取成功即可视为istio成功重新上线,dubbo会聚合本地的资源去istio请求数据,并解析响应和刷新本地缓存池数据,最后再关闭定时任务。


▧踩坑点

  • 采用全局共享的定时任务池,不能进行关闭,否则会影响其他业务。


05 感想与总结


在这次功能的改造中,笔者着实掉了一波头发,怎么找bug也找不到的情形不在少数。除了上述提到的坑点之外,其他的坑点包括但不局限于:

  • dubbo在某一次迭代里更改了获取k8s证书的方式,授权失败。
  • 原本的功能没问题,merge了下master代码,grpc版本与envoy版本不兼容,各种报错,最后靠降低版本成功解决。
  • 原本的功能没问题,merge了下master代码,最新分支代码里metadataservice发成了triple,然而在Proxyless模式下只支持dubbo协议,debug了三四天,最后发现需要增加配置。

......


但不得不承认,Proxyless Service Mesh确实有它自身的优势和广阔的市场前景。自dubbo3.1.0 release版本之后,dubbo已经实现了Proxyless Service Mesh能力,未来dubbo社区将深度联动业务,解决更多实际生产环境中的痛点,更好地完善service mesh能力。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
7月前
|
负载均衡 Dubbo Java
Dubbo 3.x:探索阿里巴巴的开源RPC框架新技术
随着微服务架构的兴起,远程过程调用(RPC)框架成为了关键组件。Dubbo,作为阿里巴巴的开源RPC框架,已经演进到了3.x版本,带来了许多新特性和技术改进。本文将探讨Dubbo 3.x中的一些最新技术,包括服务注册与发现、负载均衡、服务治理等,并通过代码示例展示其使用方式。
400 9
|
监控 Dubbo Cloud Native
Apache Dubbo 云原生可观测性的探索与实践
Apache Dubbo 云原生可观测性的探索与实践
116893 10
|
存储 运维 监控
Apache Dubbo 云原生可观测性的探索与实践
Apache Dubbo 已接入指标、链路、日志等多维度观测能力,助力云原生实践,本文将介绍 Dubbo 可观测性的探索与实践。
Apache Dubbo 云原生可观测性的探索与实践
|
Kubernetes Dubbo Cloud Native
Proxyless Mesh 在 Dubbo 中的实践
本文主要剖析了 Dubbo Proxyless Mesh 的架构、服务发现以及证书管理等核心流程,最后通过示例给大家演示了如何使用 Dubbo Proxyless。
387 8
Proxyless Mesh 在 Dubbo 中的实践
|
存储 Kubernetes Dubbo
【Dubbo3终极特性】「云原生三中心架构」带你探索Dubbo3体系下的配置中心和元数据中心、注册中心的原理及开发实战(上)
【Dubbo3终极特性】「云原生三中心架构」带你探索Dubbo3体系下的配置中心和元数据中心、注册中心的原理及开发实战(上)
45035 0
【Dubbo3终极特性】「云原生三中心架构」带你探索Dubbo3体系下的配置中心和元数据中心、注册中心的原理及开发实战(上)
|
自然语言处理 Kubernetes Dubbo
Dubbo Mesh:从服务框架到统一服务控制平台
Apache Dubbo 是一款 RPC 服务开发框架,用于解决微服务架构下的服务治理与通信问题,官方提供了 Java、Golang 等多语言 SDK 实现。
555 10
Dubbo Mesh:从服务框架到统一服务控制平台
|
自然语言处理 Dubbo Cloud Native
Dubbo3 落地实践及 Mesh 解决方案
4 月 15 日-16 日,由 InfoQ 主办的 DIVE 全球基础软件创新大会通过云上展厅的形式成功召开。在微服务 & 服务治理专场,Apache Dubbo PMC、Dubbo 开源项目负责人刘军带来了主题为《Dubbo3 落地实践及其 Mesh 解决方案》的演讲。
814 5
Dubbo3 落地实践及 Mesh 解决方案
|
XML Kubernetes 负载均衡
Dubbo3实践: proxy mesh using Envoy & Istio
> 本示例演示了如何使用 Istio+Envoy 的 Service Mesh 部署模式开发 Dubbo3 服务。Dubbo3 服务使用 Triple 作为通信协议,通信过程经过 Envoy 数据面拦截,同时使用标准 Istio 的流量治理能力治理 Dubbo。 遵循以下步骤,可以轻松掌握如何开发符合 Service Mesh 架构的 Dubbo 服务,并将其部署到 Kubernetes 并接入
485 0
|
Dubbo Cloud Native 网络协议
Dubbo Mesh 总体技术架构方案
本文将对 Dubbo Mesh 整体设计原则、部署架构与插件管控机制的规划做整体说明。
Dubbo Mesh 总体技术架构方案
|
Kubernetes Dubbo Cloud Native
Dubbo Mesh - 从服务框架到统一服务控制平台
Dubbo 3 保持了 Dubbo 2 的经典架构,以解决微服务进程间通信为主要职责,通过丰富的服务治理(如地址发现、流量管理等)能力来更好地管控微服务集群;Dubbo3 对原有框架的升级是全面的,体现在核心 Dubbo 特性的几乎每个环节,通过升级实现了稳定性、性能、伸缩性、易用性的全面提升。
Dubbo Mesh - 从服务框架到统一服务控制平台
下一篇
DataWorks