基于EKF的四旋翼无人机姿态估计matlab仿真

简介: 基于EKF的四旋翼无人机姿态估计matlab仿真

1.算法描述

   卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全包含噪声的测量中,估计动态系统的状态。这种滤波方法以它的发明者鲁道夫·E·卡尔曼(Rudolf E. Kalman)命名。卡尔曼最初提出的滤波理论只适用于线性系统。Bucy,Sunahara等人提出并研究了扩展卡尔曼滤波(EKF),将卡尔曼滤波理论进一步应用到非线性领域。

   扩展卡尔曼滤波(Extended Kalman Filter,EKF)是标准卡尔曼滤波在非线性情形下的一种扩展形式,EKF算法是将非线性函数进行泰勒展开,省略高阶项,保留展开项的一阶项,以此来实现非线性函数线性化,最后通过卡尔曼滤波算法近似计算系统的状态估计值和方差估计值,对信号进行滤波。
   扩展卡尔曼滤波EKF的状态转移方程和观测方程为:   

image.png

EKF和KF的区别如下:

image.png

姿态解算就是通过融合传感器数据解算出姿态角。姿态角是俯仰角(pitch)、滚转角(roll)和偏航角(yaw)的合称,此文分别使用 α , β , γ \alpha, \beta, \gammaα,β,γ 表示。

俯仰角

   俯仰角是无人机机体系 x 轴与水平面夹角,也即机体系与航向系 x 轴的夹角,机头上仰为正,范围 α ∈ [ − π / 2 , π / 2 ] \alpha \in [-\pi/2, \pi/2]α∈[−π/2,π/2]。

滚转角

  滚转角是无人机机体系 y 轴与水平面夹角,也即机体系与航向系 y 轴的夹角,机身左升右降为正,范围 β ∈ [ − π , π ] \beta \in [-\pi, \pi]β∈[−π,π]。

偏航角

   偏航角是无人机机体系 x 轴在水平面投影与地球系 x 轴(正北方)的夹角,也即航向系 x 轴与地球系 x 轴夹角。俯视机身,顺时针方向(往东)角度递增,逆时针方向角度递减,范围 γ ∈ [ − π , π ] \gamma \in [-\pi, \pi]γ∈[−π,π]。

  可见,引入航向系之后可以更加方便地定义姿态角。注意与下面的欧拉角作对比,欧拉角和姿态角不是同样概念,这也是这里使用 α , β , γ \alpha, \beta, \gammaα,β,γ 而不是更常见的 θ , ϕ , ψ \theta, \phi, \psiθ,ϕ,ψ 的原因,后者用于表示欧拉角。

2.仿真效果预览
matlab2022a仿真结果如下:

image.png
image.png
image.png
image.png
image.png

3.MATLAB核心程序

L= 0.3875;  %单位(m)
Ix = 0.05887;  %单位(kg·m^2)
Iy = 0.05887;
Iz = 0.13151;
g = 9.81; %单位(N/kg)
 
%动力学方程的常系数
a1 = -(Iy - Iz)/Ix;
a2 = -(Iz - Ix)/Iy;
a3 = -(Ix - Iy)/Iz;  
b1 = L/Ix;
b2 = L/Iy;
b3 = 1/Iz;
 
Ts = 0.1;                    %采样时间
t = 5;                       %仿真时间
len = fix(t/Ts);            %仿真步数
n = 6;                        %状态维度
w = 0.1;                     %过程标准差
v = 0.5;                      %测量标准差
Q = w^2*eye(n);        %过程方差
R = v^2;                    %测量值的方差
 
h=@(x)[x(2);x(4);x(6)];                  %测量方程
s=[1;2;3;3;2;1];                            %初始状态
x=s+w*randn(6,1);                      %初始化状态
P = eye(6);                                 %初始化协方差矩阵
xV = zeros(6,len);                       %EKF估计值
sV = zeros(6,len);                       %真实值
zV = zeros(3,len);                       %测量值
 
for k=1:len
  %随机赋值控制量
  u2 = 0.1*randn(1,1);
  u3 = 0.1*randn(1,1);
  u4 = 0.1*randn(1,1);
  
  z = h(s) + v*randn;                     
  sV(:,k)= s;                             %实际状态
  zV(:,k) = z;                           %状态测量值
  
  %状态方程
  f=@(x)[x(1)+Ts*x(2);
           (a1*x(4)*x(6) +b1*u2)*Ts+x(2);
           x(3)+Ts*x(4);
           (a2*x(2)*x(6) +b2*u3)*Ts+x(4);
           x(5)+Ts*x(6);
           (a3*x(2)*x(4) +b3*u4)*Ts+x(6);];  
  
  %一步预测,同时计算f的雅可比矩阵A
  [x1,A]=jaccsd(f,x); 
  
  %过程方差预测
  P=A*P*A'+Q;         
  
  %状态预测,同时计算h的雅可比矩阵H
  [z1,H]=jaccsd(h,x1); 
  
  %计算卡尔曼增益
  K=P*H'/(H*P*H'+R); 
  
  %状态EKF估计值
  x=x1+K*(z-z1);        
  
  %协方差更新
  P=P-K*H*P;          
  
  xV(:,k) = x;          
  
  %更新状态
  s = f(s) + w*randn(6,1);  
end
相关文章
|
6天前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
3天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
5天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
4天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
150 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
120 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)