m基于机器学习MLP的OFDM信道估计误码率matlab仿真,对比LS和MMSE两种信道估计算法

简介: m基于机器学习MLP的OFDM信道估计误码率matlab仿真,对比LS和MMSE两种信道估计算法

1.算法描述

   信道估计器是接收机一个很重要的组成部分。在OFDM系统中,信道估计器的设计上要有两个问题:一是导频信息的选择,由于无线信道的时变特性,需要接收机不断对信道进行跟踪,因此导频信息也必须不断的传送: 二是既有较低的复杂度又有良好的导频跟踪能力的信道估计器的设计,在确定导频发送方式和信道估计准则条件下,寻找最佳的信道估计器结构。 **在实际设计中,导频信息的选择和最佳估计器的设计通常又是相互关联的,因为估计器的性能与导频信息的传输方式有关。
   本课题,我们采用GRNN神经网络进行OFDM的信道估计。

    GRNN基本原理如下:

   GRNN,General Regression Neural Network,即广义回归神经网络,最早是由美国的Donald F.Specht教授于1991年提出的基于非线性的回归理论的人工神经网络模型[47,48]。GRNN广义回归神经网络具有较好的网络适应能力,从而使得神经网络能够更加方便的进行网络训练和学习。因此,GRNN在信号过程、控制决策系统结构分析等各个科学和工程领域得到了广泛的应用。GRNN广义回归神经网络以非参数核回归为基础,以样本数据作为后验概率验证条件并进行非参数估计,最后从训练样本中计算GRNN网络中因变量和自变量之间的关联密度函数,从而计算得到因变量相对自变量的回归值。GRNN广义回归神经网络最大的优势在于其方便的网络参数设置功能,整个神经网络只需要通过设置GRNN核函数中的光滑因子就可以调整GRNN网络的性能。

   假设GRNN神经网络中的两个随机变量x和y,其联合概率密度函数为f (x ,y),且x的观测样本为X,即条件均值为:

image.png

对于未知的概率密度函数f (x, y),则可根据x和y的观测样本通过非参数估计得:

image.png
image.png

简化后可得:

image.png

  为人工神经网络的最终输出表达式。通过公式3.15可知,GRNN神经网络的输出数据和训练样本的误差主要有平滑因子决定的,因此,GRNN神经网络具有非常简便的性能控制方式,只需通过调整平滑因子就可获得较好的性能。 

2.仿真效果预览
matlab2022a仿真结果如下:

image.png
image.png
image.png
image.png

3.MATLAB核心程序

        msg                            = rand(Len*Nc/4,1)>=0.5;
        %turbo编码
        seridata1                      = func_turbo_code(msg,N,M);
        seridata                       = [seridata1,zeros(1,Len*Nc-length(seridata1))]';
        %QPSK映射
        [Qpsk0,Dqpsk_pilot,symbol_bit] = func_piQPSK_mod(seridata);
        %变换为矩阵   
        Qpsk_matrix                    = reshape(Qpsk0,fftlen,Nc);
        [Pilot_in,pilot_num,Pilot_seq,pilot_space] = func_insert_pilot(Dqpsk_pilot,Qpsk_matrix,pilot_type,T,TG);
        Pilot_in                       = fft(Pilot_in);
        %sub carrier mapping
        Pilot_in                       = func_subcarrierMap(Pilot_in); 
        %IFFT transform,产生OFDM信号
        ifft_out                       = ifft(Pilot_in);
        %插入包含间隔     
        Guard_int                      = ceil(BWs/fftlen);  
        Guard_int_ofdm                 = func_guard_interval_insert(ifft_out,fftlen,Guard_int);
        %将矩阵数据转换为串行进行输出
        Guard_int_ofdm_out             = reshape(Guard_int_ofdm,1,(fftlen+Guard_int)*(Nc+pilot_num));
        
       %%
        [Hm,Hmmatrix]            = func_mychannels(Radius,Scale1,Scale2,Nh,Nv);       
        %Step2:多径参数
        [passchan_ofdm_symbol]   = func_conv_channels(Hmmatrix,Guard_int_ofdm_out,Nmultipath,Pow_avg,delay_multi,Fre_offset,timeval,iii);
        %Step3:噪声信道 
        %大尺度衰落
        receivepower             = func_largefade(sendpower,d_,w_,f_);
        snr                      = 10^(SNR_dB(i)/10);
        sgma                     = sqrt(receivepower*timeval/(2*snr)/2);
        Rec_ofdm_symbol          = awgn(passchan_ofdm_symbol,SNR_dB(i),'measured');
        Rec_ofdm_symbol          = Rec_ofdm_symbol + normrnd(0,sgma,size(Rec_ofdm_symbol));
       %%
        %开始接收
        Guard_int_remove = func_guard_interval_remove(Rec_ofdm_symbol,(fftlen+Guard_int),Guard_int,(Nc+pilot_num));
        %FFT
        fft_out          = fft(Guard_int_remove);
        %sub carrier demapping
        fft_out          = func_desubcarrierMap(fft_out);
        fft_out          = ifft(fft_out);
        %信道估计
        %MLP                            dins,   posxy,      Dat_pilot,N_pilot,  t1,               t2,          Noise,Cp
        [Sig_Lrmmse,Hs]  = func_mlp_est(fft_out,pilot_space,Pilot_seq,pilot_num,delay_avg/timeval,4e-6/timeval,10^(SNR_dB(i)/10),Guard_int);
        %解调
        Dqpsk            = func_pideMapping(Sig_Lrmmse,fftlen*Nc);
        %turbo解码
        Dqpsk_decode     = [func_turbo_decode(2*Dqpsk(1:end-(Len*Nc-length(seridata1)))-1,N,M)]';
        %计算误码率
        err_num          = Len*Nc/4-length(find(msg==Dqpsk_decode(1:Len*Nc/4)));
        err_num2         = mean((msg-Dqpsk_decode(1:Len*Nc/4)).^2);
        Error            = Error + err_num;
        Mses             = Mses + err_num2;
    end
end
01_158m
相关文章
|
6天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的64QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统基于MATLAB 2022a仿真,适用于高要求的图像传输场景(如无人机、视频监控等),采用64QAM调制解调、扩频技术和Turbo译码提高抗干扰能力。发射端包括图像源、64QAM调制器、扩频器等;接收端则有解扩器、64QAM解调器和Turbo译码器等。核心程序实现图像传输的编码、调制、信道传输及解码,确保图像质量和传输可靠性。
33 16
|
5天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
38 5
|
1天前
|
资源调度 监控 算法
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,如无人机、视频监控等场景。系统采用QPSK调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB仿真(2022a)验证了算法效果,核心程序包括信道编码、调制、扩频及解调等步骤,通过AWGN信道测试不同SNR下的性能表现。
16 6
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
|
2月前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
64 0
|
1月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
108 4
|
12天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
32 2
|
30天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
48 1
|
1月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
102 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024

热门文章

最新文章