【文本分类】Bag of Tricks for Efficient Text Classification

简介: 【文本分类】Bag of Tricks for Efficient Text Classification

·阅读摘要:

 本文主要提出fastText模型。

·参考文献:

 [1] Bag of Tricks for Efficient Text Classification

[0] 摘要


  文章提出fastText模型,效果接近深度学习基线模型,但是速度非常快。

[1] 介绍


 深度学习模型在实践中取得了非常好的性能,但它们在训练和测试时往往相对较慢,从而限制了它们在非常大的数据集上的使用。


 线性分类器通常被认为是文本分类问题的强基线。如果使用得当,它们通常会有最先进的性能,从而应用到大语料库。


 论文提出的fastText模型表明,线性模型与秩约束和快速损失近似可以在十分钟内训练十亿字,同时实现高性能的表现。

[2] 模型结构


image.png

 这里从代码的角度上来讲解会更清楚。

image.png

  pytorch版本的fastText代码如下:

class Model(nn.Module):
    def __init__(self, config):
        super(Model, self).__init__()
        if config.embedding_pretrained is not None:
            self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False)
        else:
            self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1)
        self.embedding_ngram2 = nn.Embedding(config.n_gram_vocab, config.embed)
        self.embedding_ngram3 = nn.Embedding(config.n_gram_vocab, config.embed)
        self.dropout = nn.Dropout(config.dropout)
        self.fc1 = nn.Linear(config.embed * 3, config.hidden_size)
        # self.dropout2 = nn.Dropout(config.dropout)
        self.fc2 = nn.Linear(config.hidden_size, config.num_classes)
    def forward(self, x):
        out_word = self.embedding(x[0])
        out_bigram = self.embedding_ngram2(x[2])
        out_trigram = self.embedding_ngram3(x[3])
        out = torch.cat((out_word, out_bigram, out_trigram), -1)
        out = out.mean(dim=1)
        out = self.dropout(out)
        out = self.fc1(out)
        out = F.relu(out)
        out = self.fc2(out)
        return out

  可以看到,一元语法的embedding可以从预训练词向量获取,二元语法、三元语法就只能模型自己来训练了。

  但随着语料库的增加,由于二元语法、三元语法的存在,内存需求也会不断增加,严重影响模型构建速度,针对这些问题我们使用以下几种解决方案:

  1、使用hash来存储二元语法、三元语法

  2、由采用字粒度变化为采用词粒度

  构建数据集时,我们把二元语法、三元语法通过Hash整合到一起,变成一个索引值,操作如下:

    def biGramHash(sequence, t, buckets):
        t1 = sequence[t - 1] if t - 1 >= 0 else 0
        return (t1 * 14918087) % buckets
    def triGramHash(sequence, t, buckets):
        t1 = sequence[t - 1] if t - 1 >= 0 else 0
        t2 = sequence[t - 2] if t - 2 >= 0 else 0
        return (t2 * 14918087 * 18408749 + t1 * 14918087) % buckets
相关文章
|
6月前
|
机器学习/深度学习 数据挖掘 API
[FastText in Text Classification]论文实现:Bag of Tricks for Efficient Text Classification
[FastText in Text Classification]论文实现:Bag of Tricks for Efficient Text Classification
38 2
|
机器学习/深度学习 数据挖掘
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
57 1
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
|
自然语言处理 数据挖掘 数据处理
【提示学习】Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
目前流行的第四大范式Prompt的主流思路是PVP,即Pattern-Verbalizer-Pair,主打的就是Pattern(模板)与Verbalizer(标签映射器)。   本文基于PVP,提出PET与iPET,但是关注点在利用半监督扩充自己的数据集,让最终模型学习很多样本,从而达到好效果。
111 0
|
机器学习/深度学习 编解码 人工智能
Text to image综述阅读(2)A Survey and Taxonomy of Adversarial Neural Networks for Text-to-Image Synthesis
这是一篇用GAN做文本生成图像(Text to Image)的综述阅读报告。 综述名为:《A Survey and Taxonomy of Adversarial Neural Networks for Text-to-Image Synthesis》,发表于2019年,其将文本生成图像分类为Semantic Enhancement GANs, Resolution Enhancement GANs, Diversity Enhancement GANs, Motion Enhancement GANs四类,并且介绍了代表性model。
Text to image综述阅读(2)A Survey and Taxonomy of Adversarial Neural Networks for Text-to-Image Synthesis
|
机器学习/深度学习 人工智能 自然语言处理
【论文精读】AAAI 2022 - Unified Named Entity Recognition as Word-Word Relation Classification
到目前为止,命名实体识别(NER)已经涉及三种主要类型,包括扁平、重叠(又名嵌套)和不连续NER,它们大多是单独研究的。
239 0
【论文精读】AAAI 2022 - Unified Named Entity Recognition as Word-Word Relation Classification
|
机器学习/深度学习 自然语言处理 数据可视化
SimCSE: Simple Contrastive Learning of Sentence Embeddings论文解读
本文介绍了SimCSE,一个简单的对比学习框架,极大地推进了最先进的句子嵌入。我们首先描述了一种无监督方法,该方法采用一个输入句子,并在一个对比目标中预测自己
294 0
|
机器学习/深度学习 编解码 数据可视化
Speech Emotion Recognition With Local-Global aware Deep Representation Learning论文解读
语音情感识别(SER)通过从语音信号中推断人的情绪和情感状态,在改善人与机器之间的交互方面发挥着至关重要的作用。尽管最近的工作主要集中于从手工制作的特征中挖掘时空信息,但我们探索如何从动态时间尺度中建模语音情绪的时间模式。
141 0
|
数据可视化 数据挖掘
【论文解读】Dual Contrastive Learning:Text Classification via Label-Aware Data Augmentation
北航出了一篇比较有意思的文章,使用标签感知的数据增强方式,将对比学习放置在有监督的环境中 ,下游任务为多类文本分类,在低资源环境中进行实验取得了不错的效果
411 0
|
数据挖掘
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation-ppt版学习笔记
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation-ppt版学习笔记
129 0
|
机器学习/深度学习 数据挖掘
【文本分类】ACT: an Attentive Convolutional Transformer for Efficient Text Classification
【文本分类】ACT: an Attentive Convolutional Transformer for Efficient Text Classification
199 0
【文本分类】ACT: an Attentive Convolutional Transformer for Efficient Text Classification