【文本分类】ACT: an Attentive Convolutional Transformer for Efficient Text Classification

简介: 【文本分类】ACT: an Attentive Convolutional Transformer for Efficient Text Classification

·阅读摘要:

 本文在Transformer模型的基础上,提出改进方案,把Transformer里面的自注意力机制,改成CNN。

·参考文献:

 [1] ACT: an Attentive Convolutional Transformer for Efficient Text Classification

【注】:众所周知,Transformer是超越RNN、CNN的模型,Transformer中最有新意的就是不使用RNN、CNN,而使用自注意力机制,从而使得Transformer模型表现卓越。

  而本文提出的ACT模型就是把Transformer中的自注意力机制替换成CNN,我觉得这篇论文是否有意义,其实应该和Transformer的作者battle一下,哈哈。

[1] ACT模型


  先看一下Transformer模型:

207a502092bf42728cb36b7f3481ed18.jpg

  再看ACT模型:

image.png

  所以说,ACT模型只是把TransformerScaled Dot-Product Attention模块换成了attentive convolution mechanism

  对于attentive convolution mechanism模块,主要就是CNN加了一个Global feature representation

【注】:说白了就是普通的CNN是卷积–>池化;而论文提出的CNN是卷积+池化,其中卷积部分称为提取局部信息,池化部分称为提取全局信息。


相关文章
|
机器学习/深度学习 数据挖掘
【提示学习】HPT: Hierarchy-aware Prompt Tuning for Hierarchical Text Classification
本文是较早把Prompt应用到层级多标签文本分类领域的论文。思路是把层级标签分层编入到Pattern中,然后修改损失函数以适应多标签的分类任务。
243 0
|
7月前
|
机器学习/深度学习 数据挖掘 API
[FastText in Text Classification]论文实现:Bag of Tricks for Efficient Text Classification
[FastText in Text Classification]论文实现:Bag of Tricks for Efficient Text Classification
46 2
|
7月前
|
机器学习/深度学习 自然语言处理 并行计算
[Bert]论文实现:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
[Bert]论文实现:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
113 1
|
自然语言处理 算法
SIFRank New Baseline for Unsupervised Keyphrase Extraction Based on Pre-Trained Language Model
在社交媒体上,面临着大量的知识和信息,一个有效的关键词抽取算法可以广泛地被应用的信息检索和自然语言处理中。传统的关键词抽取算法很难使用外部的知识信息。
164 0
SIFRank New Baseline for Unsupervised Keyphrase Extraction Based on Pre-Trained Language Model
|
机器学习/深度学习 数据挖掘
【论文解读】Co-attention network with label embedding for text classification
华南理工出了一篇有意思的文章,将标签和文本进行深度融合,最终形成带标签信息的文本表示和带文本信息的标签表示。
253 1
|
机器学习/深度学习 编解码 自然语言处理
DeIT:Training data-efficient image transformers & distillation through attention论文解读
最近,基于注意力的神经网络被证明可以解决图像理解任务,如图像分类。这些高性能的vision transformer使用大量的计算资源来预训练了数亿张图像,从而限制了它们的应用。
554 0
|
机器学习/深度学习 自然语言处理 数据可视化
SimCSE: Simple Contrastive Learning of Sentence Embeddings论文解读
本文介绍了SimCSE,一个简单的对比学习框架,极大地推进了最先进的句子嵌入。我们首先描述了一种无监督方法,该方法采用一个输入句子,并在一个对比目标中预测自己
316 0
|
机器学习/深度学习 编解码 数据可视化
Speech Emotion Recognition With Local-Global aware Deep Representation Learning论文解读
语音情感识别(SER)通过从语音信号中推断人的情绪和情感状态,在改善人与机器之间的交互方面发挥着至关重要的作用。尽管最近的工作主要集中于从手工制作的特征中挖掘时空信息,但我们探索如何从动态时间尺度中建模语音情绪的时间模式。
152 0
|
机器学习/深度学习 PyTorch 测试技术
SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation 论文解读
我们提出了SegNeXt,一种用于语义分割的简单卷积网络架构。最近的基于transformer的模型由于在编码空间信息时self-attention的效率而主导了语义分割领域。在本文中,我们证明卷积注意力是比transformer中的self-attention更有效的编码上下文信息的方法。
418 0
|
机器学习/深度学习 自然语言处理 数据挖掘
【文本分类】A C-LSTM Neural Network for Text Classification
【文本分类】A C-LSTM Neural Network for Text Classification
160 0
【文本分类】A C-LSTM Neural Network for Text Classification
下一篇
DataWorks