【文本分类】ACT: an Attentive Convolutional Transformer for Efficient Text Classification

简介: 【文本分类】ACT: an Attentive Convolutional Transformer for Efficient Text Classification

·阅读摘要:

 本文在Transformer模型的基础上,提出改进方案,把Transformer里面的自注意力机制,改成CNN。

·参考文献:

 [1] ACT: an Attentive Convolutional Transformer for Efficient Text Classification

【注】:众所周知,Transformer是超越RNN、CNN的模型,Transformer中最有新意的就是不使用RNN、CNN,而使用自注意力机制,从而使得Transformer模型表现卓越。

  而本文提出的ACT模型就是把Transformer中的自注意力机制替换成CNN,我觉得这篇论文是否有意义,其实应该和Transformer的作者battle一下,哈哈。

[1] ACT模型


  先看一下Transformer模型:

207a502092bf42728cb36b7f3481ed18.jpg

  再看ACT模型:

image.png

  所以说,ACT模型只是把TransformerScaled Dot-Product Attention模块换成了attentive convolution mechanism

  对于attentive convolution mechanism模块,主要就是CNN加了一个Global feature representation

【注】:说白了就是普通的CNN是卷积–>池化;而论文提出的CNN是卷积+池化,其中卷积部分称为提取局部信息,池化部分称为提取全局信息。


相关文章
|
6月前
|
机器学习/深度学习 自然语言处理 并行计算
[Bert]论文实现:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
[Bert]论文实现:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
85 1
|
6月前
|
机器学习/深度学习 数据挖掘 API
[FastText in Text Classification]论文实现:Bag of Tricks for Efficient Text Classification
[FastText in Text Classification]论文实现:Bag of Tricks for Efficient Text Classification
38 2
|
6月前
|
机器学习/深度学习 BI
[RoFormer]论文实现:ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING
[RoFormer]论文实现:ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING
57 1
|
机器学习/深度学习 存储 自然语言处理
RAAT: Relation-Augmented Attention Transformer for Relation Modeling in Document-Level 论文解读
在文档级事件提取(DEE)任务中,事件论元总是分散在句子之间(跨句子问题),多个事件可能位于一个文档中(多事件问题)。在本文中,我们认为事件论元的关系信息对于解决上述两个问题具有重要意义,并提出了一个新的DEE框架
127 0
|
机器学习/深度学习 数据挖掘
【论文解读】Co-attention network with label embedding for text classification
华南理工出了一篇有意思的文章,将标签和文本进行深度融合,最终形成带标签信息的文本表示和带文本信息的标签表示。
240 1
|
机器学习/深度学习 编解码 自然语言处理
DeIT:Training data-efficient image transformers & distillation through attention论文解读
最近,基于注意力的神经网络被证明可以解决图像理解任务,如图像分类。这些高性能的vision transformer使用大量的计算资源来预训练了数亿张图像,从而限制了它们的应用。
523 0
|
机器学习/深度学习 自然语言处理 数据可视化
SimCSE: Simple Contrastive Learning of Sentence Embeddings论文解读
本文介绍了SimCSE,一个简单的对比学习框架,极大地推进了最先进的句子嵌入。我们首先描述了一种无监督方法,该方法采用一个输入句子,并在一个对比目标中预测自己
292 0
|
机器学习/深度学习 人工智能 自然语言处理
RoFormer: Enhanced Transformer with Rotary Position Embedding论文解读
位置编码最近在transformer架构中显示出了有效性。它为序列中不同位置的元素之间的依赖建模提供了有价值的监督。
391 0
|
机器学习/深度学习 编解码 数据可视化
Speech Emotion Recognition With Local-Global aware Deep Representation Learning论文解读
语音情感识别(SER)通过从语音信号中推断人的情绪和情感状态,在改善人与机器之间的交互方面发挥着至关重要的作用。尽管最近的工作主要集中于从手工制作的特征中挖掘时空信息,但我们探索如何从动态时间尺度中建模语音情绪的时间模式。
140 0
|
机器学习/深度学习 自然语言处理 数据挖掘
【文本分类】A C-LSTM Neural Network for Text Classification
【文本分类】A C-LSTM Neural Network for Text Classification
147 0
【文本分类】A C-LSTM Neural Network for Text Classification