Paddle 印刷电路板(PCB)瑕疵检测

简介: Paddle 印刷电路板(PCB)瑕疵检测

框架介绍


PaddleDetection:飞桨推出的PaddleDetection是端到端目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的训练、精度速度优化到部署全流程。该框架中提供了丰富的数据增强、网络组件、损失函数等模块,集成了模型压缩和跨平台高性能部署能力。目前基于PaddleDetection已经完成落地的项目涉及工业质检、遥感图像检测、无人巡检等多个领域。


印刷电路板(PCB)瑕疵数据集


印刷电路板(PCB)瑕疵数据集:数据下载链接,是一个公共的合成PCB数据集,由北京大学发布,其中包含1386张图像以及6种缺陷(缺失孔,鼠咬伤,开路,短路,杂散,伪铜),用于检测、分类和配准任务。我们选取了其中适用于检测任务的693张图像,随机选择593张图像作为训练集,100张图像作为验证集。


本项目选取yolov3_darknet.yml作为本项目的训练配置文件。该配置文件选取的是YOLOv3_darknet模型,骨干网络为DarkNet,yolo_head为YOLOv3Head。

yolov3_darknet_baseline.yml配置文件修改适配:
    max_iters: 2669
    num_classes: 6
    base_lr: 0.00025
    milestones: [1779, 2372]
yolov3_darknet_baseline.yml的Reader修改适配:
TrainReader:
    image_dir: images
    anno_path: Annotations/train.json
    dataset_dir: PCB_DATASET
EvalReader:
    image_dir: images
    anno_path: Annotations/val.json
    dataset_dir: PCB_DATASET
TestReader:
  anno_path: PCB_DATASET/Annotations/val.json


Anchor重新聚类


python tools/anchor_cluster.py -c ../yolov3_darknet_baseline.yml -n 9 -s 608 -m v2 -i 1000

结果如下:

anchors: [[8, 14], [13, 14], [10, 21],
           [21, 13], [16, 20], [12, 31],
           [30, 17], [22, 27], [36, 36]]


Anchor重新聚类完成后,修改配置文件中YOLOv3Head里的anchors字段,和TrainReader的Gt2YoloTarget中anchors字段。


训练与评估:

python -u tools/train.py -c yolov3_darknet_baseline.yml --eval
python -u tools/eval.py -c yolov3_darknet_baseline.yml -o weights=output/yolov3_darknet_baseline/best_model


最终评估结果如下图所示:


从上图中,可以看出YOLOV3_darknet模型在印刷电路板(PCB)瑕疵数据集数据集上的mAP = 34.9


补充


awesome-DeepLearning:一站式深度学习在线百科,内容涵盖零基础入门深度学习、产业实践深度学习、特色课程;深度学习百问、产业实践(开发中) 等等。从理论到实践,从科研到产业应用,各类学习材料一应俱全,旨在帮助开发者高效地学习和掌握深度学习知识,快速成为AI跨界人才。

目录
相关文章
|
数据采集 数据挖掘
基于PaddlePaddle的酒驾风险行为分析预测
基于PaddlePaddle的酒驾风险行为分析预测
109 0
|
算法 数据挖掘 数据处理
体细胞突变检测分析流程-系列1( WES&Panel)
体细胞突变检测分析流程-系列1( WES&Panel)
149 0
体细胞突变检测分析流程-系列1( WES&Panel)
|
C++ 计算机视觉 Python
Python Yolov5路面裂缝识别检测识别
Python Yolov5路面裂缝识别检测识别
203 0
|
机器学习/深度学习 自动驾驶 算法
【OpenAI】Python:基于 Gym-CarRacing 的自动驾驶项目(2)| 车道检测功能的实现 | 边缘检测与分配 | 样条拟合
【OpenAI】Python:基于 Gym-CarRacing 的自动驾驶项目(2)| 车道检测功能的实现 | 边缘检测与分配 | 样条拟合
118 1
|
2月前
|
机器学习/深度学习 人工智能 算法
基于YOLOv8的火焰烟雾实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的火焰烟雾实时检测系统,使用6744张图片训练有效模型,开发了带GUI界面的系统,支持图片、视频和摄像头实时检测,具备模型权重导入、检测置信度调节等功能,并提供项目完整代码和数据集。
133 1
基于YOLOv8的火焰烟雾实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
2月前
|
算法 数据可视化 安全
基于Dlib的疲劳检测系统
基于Dlib的疲劳检测系统
47 0
|
6月前
|
机器学习/深度学习 算法 安全
基于YOLOv8深度学习的危险区域人员闯入检测与报警系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、区域闯入
基于YOLOv8深度学习的危险区域人员闯入检测与报警系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、区域闯入
|
5月前
|
传感器 数据采集 算法
LabVIEW材料样本结构缺陷检测
LabVIEW材料样本结构缺陷检测
24 0
|
C++ 计算机视觉 Python
Python+Yolov5电梯口跌倒识别
这篇博客针对<<Python+Yolov5电梯口跌倒识别>>编写代码,代码整洁,规则,易读。 学习与应用推荐首选。
156 0
|
编解码 数据可视化
基于PaddleOCR的多视角集装箱箱号检测识别
基于PaddleOCR的多视角集装箱箱号检测识别
基于PaddleOCR的多视角集装箱箱号检测识别