m基于粒子群算法的分布式电源DG的优化配置

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
简介: m基于粒子群算法的分布式电源DG的优化配置

1.算法描述

   随着科技的发展,人民生活水平的不断提高,使得当今社会的发展对能源环保性和供电的可靠性的要求也不断提高。集中式供电系统由于污染大、可靠性差及操作难度大等缺陷越来越不能满足供电的要求。研究表明,集中式供电系统和分布式电源相结合可以降低配电网系统损耗,节省投资成本,增大系统的稳定性。但DG并网运行后会对系统的损耗、潮流分布、系统可靠性等方面造成影响,这些影响与分布式电源的位置和容量有关。所以,研究对分布式电源位置、容量优化配置问题具有重大意义。目前,对分布式电源选址定容的方法很多。本论文建立了系统有功损耗最小的单目标函数优化模型,并列写了相关的约束条件。介绍了不同的分布式电源的工作原理和并网接口类型,本论文中采用了双馈风力发电作为分布式电源。潮流计算的方法为前推回代法,使用遗传算法对分布式电源进行优化。针对遗传算法的不足,对遗传算法的选择操作进行了改进,从而提高了对问题解的查找能力,防止出现局部最优解的问题。

   分布式电源(Distributed Generation,简称DG),通常是指发电功率在几千瓦至数百兆瓦(也有建议在30~50兆瓦以下)的小模块化、分散式、布置在用户附近的高效、可靠的发电单元。

分布式电源与配电网相结合,其优点可简单总结为如下几个方面:

1)分布式电源占地面积小,装机容量小,且经常安装于用户和负荷附近,降低线路损耗,节约投资成本。而集中式电源集中式发电,需远距离传输至用户,这样会增大线路的损耗,线路过长使安装成本增高。

2)分布式电源通过合理的能量的梯级利用,增大了能量的使用率,从而减小能量的损耗。

3)分布式电源可以弥补供电安全性的不足,提高供电的稳定性,一般在负荷侧安装DG,通过与配电网结合,可以在配电网事故停电下维持重要用户供电,保证用户用电可靠性。

4)对分布式能源进行合理优化,能够减小系统的损耗,减少能源浪费。

5)对分布式电源的合理优化降低能源的损耗,减少资金的投入和对环境的污染。

    分布式电源作为一种绿色新能源,由于其具有能源利用率高且对环境污染小等优点,所以得到了广泛的应用研究。目前,分布式电源主要以备用电源的形式应用在工业、农业等领域。集中式供电系统中多个发电系统经过一个或几个变压器的汇集再并入配电网中,分布式供电系统中发电系统相互独立,每个发电系统都可以直接并入配电网。分布式电源和集中式电源最大的区别是安装在负荷点附近和规模较小,所以DG可以根据附近负荷需求量的大小,直接向负荷进或系统进行供电,一般情况下,不论为何种发电形式,只要是安装在用户附近的发电设备都可以定义为分布式电源。电力工业由单纯的集中式发电模式逐渐转型为以大型发电站为主、分布式电源为辅的新型发电模式,使供电方式更加灵活,从而提高了电能的质量、降低系统损耗。

   近年来,各个国家都致力于发展分布式电源,并取得一定的成果。在风力发电方面,欧洲拥有大量的风力资源,风力发电的发展已由陆地向海洋转移,集中式开发、远距离传输是以后的主流方向。在光伏发电方面,西方国家的建筑主要为中低层住宅,适合光伏发电。在天然气发电方面,欧美各国具有很高的天然气产量,而且管网设施发展完善,具有很好的发展条件,所以适宜发展天然气发电。我们国家的风力资源大部分在近海和三北地区,适合集中式发电,小部分的风力资源在中东部地区,有利于分布式发电。太阳能资源分布在西北地区既华北荒漠地区,适合集中式开发,且我们国家城市的建筑较高,太阳能发电条件不完善,城市地区不适合太阳能发电。天燃气的供应不足,管道设施不够完善,使天然气发电的发展受到限制。我国拥有大量的水力资源,与欧洲国家相比条件要好,发展前景广阔。目前,我们国家的分布式电源类型以水力发电为主,其发电技术也是非常先进。总之,我们国家分布式发电技术的发展不算落后,但是由于资源条件、政府政策和产业基础的影响,还是存在一定差异。

   目标函数:最小有功损耗

1.png
2.png

   潮流计算使用前推回代法,分为不含分布式电源和含分布式电源的潮流计算程序,并且在结果中要对不含分布式电源和含分布式电源的节点电压、支路电流、支路损耗进行画图对比,假如选择加两个分布式电源则在最终的结果中要展现出网络的损耗以及选择出来的两个分布式电源的位置以及容量(及就是功率),并画出进化曲线图。

3.png

2.仿真效果预览
matlab2022a仿真结果如下:

4.png
5.png
6.png
7.png

3.MATLAB核心程序

%c1 学习因子1
%c2 学习因子2
%w惯性权重
%M最大迭代次数
%D搜索空间维数
%N初始化群体个体数目
clc;
clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')
 
 
tic  % 输出程序运行时间
global Vi  X Y Z;  %定义全局变量Vi
Num=33;
N = 50;
% c1 = 1.5;
% c2 = 2.5;
% c1 = 2;
% c2 = 2;
% c1 = 2.05;
% c2 = 2.05;
% w=0.9;
c1 = 1;
c2 = 1.5;
w =0.65;
M =500;
% M =200;
D = 6;
% D = 4;
%3DG
ub = [33 33 33  3  3  3];
% ub = [33 33 33  2.048  2.048  2.048];
lb = [2  2  2   0  0  0];
% ub = [33 33 33  3  3  3  3  3  3];
% lb = [2  2  2   0  0  0  0  0  0];
%2DG
% ub = [33 33   2  2];
% lb = [2  2    0  0];
%%%%%%%%%%%%%%%%%%初始化种群的个体(可在这里限制位置和速度的范围)%%%%%
for i = 1:N
    for j = 1:D
        ub_j=ub(j);
        lb_j=lb(j);
        if j < 4
%           if j<3
            x(i,j) = round(rand(1,1).*(ub_j-lb_j))+lb_j;
        else
            x(i,j)=rand(1,1).*(ub_j-lb_j)+lb_j;
        end
%         x(i,j) = randn;    %随机初始化位置
        v(i,j) = randn;    %随机初始化速度
    end
end
 
%%%%%%%%%%%%先计算各个粒子的适应度值,并初始化pi和pg%%%%%%%%%
for i = 1:N
    p(i) = fitness(x(i,:));
    y(i,:) = x(i,:);
end
pg = x(N,:);    %pg为全局最优
for i = 1:(N-1)
    if fitness(x(i,:)) < fitness(pg)
        pg = x(i,:);
    end
end
 
%%%%%%%%%%进入主要循环,按照公式依次迭代,直到满足精度要求%%%%%%%%%%%
for t = 1:M
    t
    for i = 1:N        %更新速度 位移
        v(i,:) = w*v(i,:)+c1*rand*(y(i,:)-x(i,:)-x(i,:))+c2*rand*(pg-x(i,:));
        x(i,:) = x(i,:) + v(i,:);
        for j = 1:D
            ub_j=ub(j);
            lb_j=lb(j);
            if j<4
%               if j < 3
               if x(i,j) > ub(j)
                    x(i,j) = round(rand(1,1).*(ub_j-lb_j))+lb_j;
              elseif x(i,j) < lb(j)
                      x(i,j) = round(rand(1,1).*(ub_j-lb_j))+lb_j;
%         else
%             x(i,j)=rand(1,1).*(ub_j-lb_j)+lb_j;
             end
            else
                if x(i,j) > ub(j)
                    x(i,j)=rand(1,1).*(ub_j-lb_j)+lb_j;
                elseif x(i,j) < lb(j)
                    x(i,j)=rand(1,1).*(ub_j-lb_j)+lb_j;
                end
            end
        end
        x(i,[1,2,3]) = round(x(i,[1,2,3]));
%           x(i,[1,2]) = round(x(i,[1,2]));
        if fitness(x(i,:)) < p(i)
            p(i) = fitness(x(i,:));
            y(i,:) = x(i,:);
        end
        if p(i) < fitness(pg)
            pg = y(i,:);
        end
   end
    Pbest(t) = fitness(pg);
end
相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
16小时前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
|
1天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
15 6
|
7天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
32 3
|
7天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
22 2
|
16天前
|
存储 算法 安全
分布式系统架构1:共识算法Paxos
本文介绍了分布式系统中实现数据一致性的重要算法——Paxos及其改进版Multi Paxos。Paxos算法由Leslie Lamport提出,旨在解决分布式环境下的共识问题,通过提案节点、决策节点和记录节点的协作,确保数据在多台机器间的一致性和可用性。Multi Paxos通过引入主节点选举机制,优化了基本Paxos的效率,减少了网络通信次数,提高了系统的性能和可靠性。文中还简要讨论了数据复制的安全性和一致性保障措施。
33 1
|
2月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
4月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
131 2
基于Redis的高可用分布式锁——RedLock
|
21天前
|
存储 NoSQL Java
使用lock4j-redis-template-spring-boot-starter实现redis分布式锁
通过使用 `lock4j-redis-template-spring-boot-starter`,我们可以轻松实现 Redis 分布式锁,从而解决分布式系统中多个实例并发访问共享资源的问题。合理配置和使用分布式锁,可以有效提高系统的稳定性和数据的一致性。希望本文对你在实际项目中使用 Redis 分布式锁有所帮助。
58 5
|
24天前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
51 8
|
1月前
|
NoSQL Redis
Redis分布式锁如何实现 ?
Redis分布式锁通过SETNX指令实现,确保仅在键不存在时设置值。此机制用于控制多个线程对共享资源的访问,避免并发冲突。然而,实际应用中需解决死锁、锁超时、归一化、可重入及阻塞等问题,以确保系统的稳定性和可靠性。解决方案包括设置锁超时、引入Watch Dog机制、使用ThreadLocal绑定加解锁操作、实现计数器支持可重入锁以及采用自旋锁思想处理阻塞请求。
58 16