【algorithm】算法基础课---二分查找算法(附笔记 | 建议收藏)

简介: 【algorithm】算法基础课---二分查找算法(附笔记 | 建议收藏)

在这里插入图片描述

🚀write in front🚀
📝个人主页:认真写博客的夏目浅石.
🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝
📣系列专栏: AcWing算法学习笔记
💬总结:希望你看完之后,能对你有所帮助,不足请指正!共同学习交流 🖊

前言

在这里插入图片描述
关于我写这篇博客的目的以及原因

其实很早前我就写过博客关于二分法,但是我是不满意的或是我觉得不完美的,于是寒假我又花费三天时间又学了一次,今天就把我所学到的经验和知识输出出来,以供复习和学习。
声明:这里知识基于==算法小抄==与==深入浅出的程序设计==两本书+==AcWing算法课==(侵权删)


提示:以下是本篇文章正文内容,下面案例可供参考

一、二分查找的思想

由于找一个数遍历的时间复杂度有些题目会超时,所以就需要一个更加优秀的算法---==二分查找算法==,其实二分算法可以将时间复杂度缩小到==logN== 想一想为什么?

那么废话不多说,下面就来讲二分查找的基本思想:
我们开始定义两个变量,left,right分别指向数组的左端点和右端点(这里会出现左闭右开以及都是闭区间的边界问题,这个问题下面单独会讲解,大家不用着急)

利用数学上边的二分法就是一次检查一半,这样就可以一次去除一半的不符合要求的数据,大大加大了效率,通过不断地迭代,进而二分出正确答案

二、二分查找的模板

1.寻找⼀个数(基本的⼆分搜索)

这个场景是最简单的,肯能也是⼤家最熟悉的,即搜索⼀个数,如果存在,
返回其索引,否则返回 -1。

在这里插入图片描述
这里再把二分模板的代码附上:
这里是一个左闭右开区间

                    //数组         //目标    //数组长度 
int binarySearch(int* nums, int target, int size)
{
    //特殊情况,可以了解一下这里不计入模板 
    //if(nums==NULL||size==0)
    //    return -1;
    
    int left=0,right=size-1;
    while(left<right)
    {
        int mid=left+(right-left)/2;//防止溢出
        if(nums[mid]>=target) r=mid;
        else l=mid+1;
    }
    if(nums[left]!=target) return -1;
    else return left; 
}

这里是一个左右都闭的方法

                    //数组         //目标    //数组长度 
int binarySearch(int* nums, int target, int size)
{
    //特殊情况,可以了解一下这里不计入模板 
    //if(nums==NULL||size==0)
    //return -1;
    
    int left=0,right=size-1;
    while(left<=right)
    {
        if(nums[mid] == target)
            return mid;
        else if (nums[mid] < target)
            left = mid + 1; // 注意
        else if (nums[mid] > target)
            right = mid - 1; // 注意
    }
    if(nums[left]!=target) return -1;
    else return left; 
}

2.边界问题

1、为什么 while 循环的条件中是 <=,⽽不是 <?
因为初始化 right 的赋值是 size - 1 ,即最后⼀个元素的索
引,⽽不是 size

这⼆者可能出现在不同功能的⼆分查找中,区别是:==前者相当于两端都闭区
间 [left, right]== ,后者相当于==左闭右开区间 [left, right)== ,因为索引⼤
⼩为 size 是越界的。

我们这个算法中使⽤的是前者 [left, right] 两端都闭的区间。这个区间
其实就是每次进⾏搜索的区间。

什么时候应该停⽌查找呢?当然,找到了⽬标值的时候可以终⽌:

if(nums[mid] == target)
    return mid;

但如果没找到,就需要 while 循环终⽌,然后返回 -1。那 while 循环什么时
候应该终⽌?查找区间为空的时候应该终⽌,意味着你没得找了,就等于没
找到嘛。

while(left <= right) 的终⽌条件是 left == right + 1 ,写成区间的形式
就是 [right + 1, right] ,或者带个具体的数字进去 [3, 2] ,可⻅这时候
区间为空,因为没有数字既⼤于等于 3 ⼜⼩于等于 2 的吧。所以这时候
⼆分查找解题套路框架
while 循环终⽌是正确的,直接返回 -1 即可。
while(left < right) 的终⽌条件是 left == right ,写成区间的形式就是
[left, right] ,或者带个具体的数字进去 [2, 2] ,这时候区间⾮空,还
有⼀个数 2,但此时 while 循环终⽌了。也就是说这区间 [2, 2] 被漏掉
了,索引 2 没有被搜索,如果这时候直接返回 -1 就是错误的。

当然,如果你⾮要⽤ while(left < right) 也可以,我们已经知道了出错的
原因,就打个补丁好了:

//...
while(left < right) {
// ...
}
return nums[left] == target ? left : -1;

 **2、为什么 left = mid + 1 , right = mid - 1 ?我看有的代码是 right =
mid 或者 left = mid ,没有这些加加减减,到底怎么回事,怎么判断?**

这也是⼆分查找的⼀个难点,不过只要你能理解前⾯的内容,就能够很
容易判断。

本算法的查找区间是两端都闭的,
即 [left, right] 。那么当我们发现索引 mid 不是要找的 target 时,下
⼀步应该去搜索哪⾥呢?

当然是去搜索 [left, mid-1] 或者 [mid+1, right] 对不对?**因为 mid 已
经搜索过,应该从搜索区间中去除。**

3、此算法有什么缺陷?
我想你应该已经掌握了该算法的所有细节,以及这样处理的原因。但
是,这个算法存在局限性。
⽐如说给你有序数组 nums = [1,2,2,2,3] , target 为 2,此算法返回的索
引是 2,没错。但是如果我想得到 target 的左侧边界,即索引 1,或者我
想得到 target 的右侧边界,即索引 3,这样的话此算法是⽆法处理的。
⼆分查找解题套路框架

这样的需求很常⻅,**你也许会说,找到⼀个 target,然后向左或向右线性搜
索不⾏吗?可以,但是不好,因为这样难以保证⼆分查找对数级的复杂度
了。**
我们后续的算法就来讨论这两种⼆分查找的算法。

3.寻找左侧边界的⼆分搜索

                    //数组         //目标    //数组长度 
int binarySearch(int* nums, int target, int size)
{
    //特殊情况,可以了解一下这里不计入模板 
    //if(nums==NULL||size==0)
    //    return -1;
    
    int left=0,right=size;//注意
    while(left<right)
    {
        int mid=left+(right-left)/2;//防止溢出
        if(nums[mid]>=target) r=mid;
        else l=mid+1;
    }
    if(nums[left]!=target) return -1;
    else return left; 
}

1、为什么 while 中是 < ⽽不是 <= ?
⽤相同的⽅法分析,因为 right = size ⽽不是 `size -
1 。因此每次循环的「搜索区间」是 [left, right)` 左闭右开。
while(left < right) 终⽌的条件是 left == right ,此时搜索区间 `[left,
left)` 为空,所以可以正确终⽌。

PS:这⾥先要说⼀个搜索左右边界和上⾯这个算法的⼀个区别,也是很多
读者问的:**刚才的 right 不是 size - 1 吗,为啥这⾥⾮要写成
size 使得「搜索区间」变成左闭右开呢?**

因为对于搜索左右侧边界的⼆分查找,这种写法⽐较普遍,我就拿这种写法
举例了,保证你以后遇到这类代码可以理解。你⾮要⽤两端都闭的写法反⽽
更简单,我会在后⾯写相关的代码,把三种⼆分搜索都⽤⼀种两端都闭的写
法统⼀起来,你耐⼼往后看就⾏了。

 **2、为什么没有返回 -1 的操作?如果 nums 中不存在 target 这个值,怎
么办?**
因为要⼀步⼀步来,先理解⼀下这个「左侧边界」有什么特殊含义:
在这里插入图片描述
对于这个数组,算法会返回 1。这个 1 的含义可以这样解读: nums 中⼩于
2 的元素有 1 个。

⽐如对于有序数组 nums = [2,3,5,7] , target = 1 ,算法会返回 0,含义
是: nums 中⼩于 1 的元素有 0 个。
再⽐如说 nums = [2,3,5,7], target = 8 ,算法会返回 4,含义是: nums
中⼩于 8 的元素有 4 个。
⼆分查找解题套路框架

综上可以看出,函数的返回值(即 left 变量的值)取值区间是闭区间
[0, size] ,所以我们简单添加两⾏代码就能在正确的时候 return
-1;

3、为什么 left = mid + 1 , right = mid ?和之前的算法不⼀样?
这个很好解释,因为我们的「搜索区间」是 [left, right) 左闭右
开,所以当 nums[mid] 被检测之后,下⼀步的搜索区间应该去掉 mid 分
割成两个区间,即 [left, mid)[mid + 1, right)

4、为什么返回 left ⽽不是 right ?
都是⼀样的,因为 while 终⽌的条件是 left == right 。

int left_bound(int[] nums, int target)
{
    int left = 0, right = nums.length - 1;
    // 搜索区间为 [left, right]
    while (left <= right)
    {    
        int mid = left + (right - left) / 2;
        if (nums[mid] < target) {
        // 搜索区间变为 [mid+1, right]
        left = mid + 1;
        }
        else if (nums[mid] > target) 
        {
            // 搜索区间变为 [left, mid-1]
            right = mid - 1;
        } 
        else if (nums[mid] == target) 
        {
            // 收缩右侧边界
            right = mid - 1;
        }
    }
}
// 检查出界情况
    if (left >= nums.length || nums[left] != target)
        return -1;
    return left;
}

4.寻找右侧边界的⼆分查找

int right_bound(int[] nums, int target)
{
    int left = 0, right = nums.length - 1;
    // 搜索区间为 [left, right]
    while (left <= right)
    {    
        int mid = left + (right - left) / 2;
        if (nums[mid] < target) {
        // 搜索区间变为 [mid+1, right]
        left = mid + 1;
        }
        else if (nums[mid] > target) 
        {
            // 搜索区间变为 [left, mid-1]
            right = mid - 1;
        } 
        else if (nums[mid] == target) 
        {
            // 收缩右侧边界
            left = mid - 1;
        }
    }
}
// 检查出界情况
    if (lright < 0 || nums[right] != target)
        return -1;
    return right;
}

思路类似左边界。

三、经典题目集

在这里插入图片描述

int search(int* nums, int numsSize, int target)
{
    int left=0,right=numsSize-1;
    while(left<=right)
    {
        int mid=left+(right-left)/2;
        if(nums[mid]==target)
        {
            return mid;
        }
        else if(nums[mid]>target)
        {
            right=mid-1;
        }
        else if(nums[mid]<target)
        {
            left=mid+1;
        }
    }
    return -1;
}
// int search(int* nums, int numsSize, int target)
// {
//     int left=0,right=numsSize-1;
//     while(left<right)
//     {
//         int mid=(right+left)/2;
//         if(nums[mid]>=target) right=mid;
//         else left=mid+1;
//     }
//     if(nums[left]!=target) return -1;
//     else return left;
// }

在这里插入图片描述

int searchInsert(int* nums, int numsSize, int target)
{
    int left=0,right=numsSize-1,ans=numsSize;
    while(left<=right)
    {
        int mid=left+(right-left)/2;
        if(nums[mid]>=target)
        {
            ans=mid;
            right=mid-1;
        }
        else left=mid+1;
    }
    return ans;
}


// {
//     int left=0,right=numsSize;
//     while(left<right)
//     {
//         int mid=(left+right)/2;
//         if(nums[mid]>=target) right=mid;
//         else left=mid+1;
//     }
//     return left;
// }

在这里插入图片描述

/*
 * 输入 **matrix 是长度为 matrixSize 的数组指针的数组,其中每个元素(也是一个数组)
 * 的长度组成 *matrixColSize 数组作为另一输入,*matrixColSize 数组的长度也为 matrixSize
 */                     //二维数组         //数组长度         //一维数组       //目标数字
bool findNumberIn2DArray(int** matrix, int matrixSize, int* matrixColSize, int target)
{
    if(matrix==NULL || matrixSize==0 || *matrixColSize==0)
        return false;
    
    int row=matrixSize; //行数
    int col=matrixColSize[0]; 
    
    int i=0;
    int j=col-1;
    while(i<row && j>=0)
    {
        if(matrix[i][j]==target) return true;
        else if(matrix[i][j]>target) j--;
        else if(matrix[i][j]<target) i++;
    }

    return false;
}

总结

1、分析⼆分查找代码时,不要出现 else,全部展开成 else if ⽅便理解。
2、注意「搜索区间」和 while 的终⽌条件,如果存在漏掉的元素,记得在
最后检查。
3、如需定义左闭右开的「搜索区间」搜索左右边界,只要在 `nums[mid] ==
target` 时做修改即可,搜索右侧时需要减⼀。
4、如果将「搜索区间」全都统⼀成两端都闭,好记,只要稍改 `nums[mid]
==target` 条件处的代码和返回的逻辑即可,推荐拿⼩本本记下,作为⼆分搜索模板。

  我是夏目浅石,希望和你一起学习进步,刷题无数!!!希望各位大佬==能一键三连==支持一下博主,hhhh~我们下期见喽

特别注意:本次博客基于算法小抄以及AcWing算法课写出来的内容如果想进一步学习,希望您可以自己看书+看视频。

在这里插入图片描述

相关文章
|
3月前
|
算法
【❤️算法笔记❤️】-每日一刷-19、删除链表的倒数第 N个结点
【❤️算法笔记❤️】-每日一刷-19、删除链表的倒数第 N个结点
81 1
|
3月前
|
算法 索引
❤️算法笔记❤️-(每日一刷-141、环形链表)
❤️算法笔记❤️-(每日一刷-141、环形链表)
56 0
|
3月前
|
算法
【❤️算法笔记❤️】-(每日一刷-876、单链表的中点)
【❤️算法笔记❤️】-(每日一刷-876、单链表的中点)
57 0
|
3月前
|
算法
【❤️算法笔记❤️】-每日一刷-23、合并 K 个升序链表
【❤️算法笔记❤️】-每日一刷-23、合并 K 个升序链表
36 0
|
3月前
|
存储 算法
【❤️算法笔记❤️】-每日一刷-21、合并两个有序链表
【❤️算法笔记❤️】-每日一刷-21、合并两个有序链表
120 0
|
15天前
|
算法 索引
【算法】——二分查找合集
二分查找基础模版和进阶模版,查找元素位置,搜索插入位置,x的平方根,山脉数组的峰顶索引,寻找峰值,点名
|
5月前
|
算法
【算法】二分查找——在排序数组中查找元素的第一个和最后一个位置
【算法】二分查找——在排序数组中查找元素的第一个和最后一个位置
|
3月前
|
算法 C# 索引
C#二分查找算法
C#二分查找算法
|
3月前
|
算法 API 计算机视觉
人脸识别笔记(一):通过yuface调包(参数量54K更快更小更准的算法) 来实现人脸识别
本文介绍了YuNet系列人脸检测算法的优化和使用,包括YuNet-s和YuNet-n,以及通过yuface库和onnx在不同场景下实现人脸检测的方法。
99 1
|
3月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
89 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)