m云计算任务调度优化matlab仿真,输出成本,时间,负荷优化结果,对比ACO,PSO,WOA三种优化算法

简介: m云计算任务调度优化matlab仿真,输出成本,时间,负荷优化结果,对比ACO,PSO,WOA三种优化算法

1.算法描述

   鲸鱼算法(Whale Optimization Algorithm,WOA)[1]。鲸鱼优化算法(WOA)是 2016 年由澳大利亚格里菲斯大学的 Mirjalili 等提出的一种新的群体智能优化算法,因算法简练易于实现,且对目标函数条件要求宽松,参数控制较少等种种优点受到一批又一批学者的亲睐,且经过不断的改进WOA已应用于许多领域。WOA算法设计的既精妙又富有特色,它源于对自然界中座头鲸群体狩猎行为的模拟, 通过鲸鱼群体搜索、包围、追捕和攻击猎物等过程实现优时化搜索的目的。在原始的WOA中,提供了包围猎物,螺旋气泡、寻找猎物的数学模型。

image.png

   WOA算法的初始阶段中,座头鲸并不知道食物所在的位置,他们都是通过群体合作来获得食物的位置信息,因此,距离食物最近的鲸鱼相当于当前的一个局部最优解,其他鲸鱼个体都会朝这个位置靠近,从而逐步包围食物,因此使用下列的数学模型表示:

image.png

2.2气泡攻击

本阶段模仿座头鲸进行气泡攻击,通过收缩包围和螺旋更新位置来设计鲸鱼捕食吐出气泡的行为,从而达到鲸鱼局部寻优的目的。

(1)螺旋更新位置

座头鲸个体首先计算与当前最优鲸鱼的距离,然后再以螺旋方式游走,在进行食物的搜索时候,螺旋游走方式的数学模型为:

image.png

2.3寻觅食物阶段

   座头鲸通过控制|A|向量游走获取食物,当|A|>1的时候,座头鲸个体向着参考座头鲸的位置靠近,鲸鱼个体朝着随机选取的座头鲸更新位置,这种方式保证了座头鲸个体能够进行全局搜索,获得全局最优解,其数学模型表示如下:

4.png
5.png

优化目标函数概述:

优化目标函数做如下的设计:

image.png

即成本,时间,负荷

7.png
8.png

2.仿真效果预览
matlab2022a仿真如下:

9.png
10.png
11.png
12.png

3.MATLAB核心程序

Iters        = 200; %迭代次数
D            = M*N; %搜索空间维数
woa_idx      = zeros(1,D);
woa_get      = inf; 
 
%初始化种群的个体
for i=1:Num
    for j=1:D
        xwoa(i,j)=randn; %随机初始化位置
    end
end 
 
 
for t=1:Iters
    t
    for i=1:Num
        %目标函数更新
        [pa(i),pa1(i),pa2(i),pa3(i)]  = fitness(xwoa(i,:));
        Fitout                        = pa(i);
        %更新
        if Fitout < woa_get  
            woa_get = Fitout; 
            woa_idx = xwoa(i,:);
        end
    end
    %调整参数
    c1 = 2-t*((1)/300); 
    c2 =-1+t*((-1)/300);
    %位置更新
    for i=1:Num
        r1         = rand();
        r2         = rand();
        K1         = 2*c1*r1-c1;  
        K2         = 2*r2;             
        l          =(c2-1)*rand + 1;  
        rand_flag  = rand();   
        
        for j=1:D
            if rand_flag<0.5   
               if abs(K1)>=1
                  RLidx    = floor(Num*rand()+1);
                  X_rand   = xwoa(RLidx, :);
                  D_X_rand = abs(K2*X_rand(j)-xwoa(i,j)); 
                  xwoa(i,j)= X_rand(j)-K1*D_X_rand;     
               else
                  D_Leader = abs(K2*woa_idx(j)-xwoa(i,j)); 
                  xwoa(i,j)= woa_idx(j)-K1*D_Leader;    
               end
            else
                distLeader = abs(woa_idx(j)-xwoa(i,j));
                xwoa(i,j)  = distLeader*exp(6*l).*cos(l.*2*pi)+woa_idx(j);
            end
        end
    end
    [pb,pb1,pb2,pb3]  = fitness(woa_idx);
    Pbest(t)  = pb;
    Pbest1(t) = pb1;
    Pbest2(t) = pb2;
    Pbest3(t) = pb3;
end
 
 
 
figure;
subplot(221);
plot(Pbest,'b');
legend('加权收敛目标');
grid on
%输出三个指标的收敛曲线
subplot(222);
plot(Pbest1,'b');
legend('归一化成本值');
grid on
subplot(223);
plot(Pbest2,'b');
legend('归一化时间值');
grid on
subplot(224);
plot(Pbest3,'b');
legend('归一化负荷值');
grid on
 
 
%输出调度结果
[aij,fobj,fobj1,fobj2,fobj3] = fitness_results(woa_idx);
 
%显示各个资源的三个指标的利用率
%处理能力利用率
for i = 1:M
    tmps = aij(:,i);
    indx = find(tmps==1);
    SE(i)= sum(Et(indx))/En(i);
end
%内存利用率
for i = 1:M
    tmps = aij(:,i);
    indx = find(tmps==1);
    SS(i)= sum(St(indx))/Sn(i);
end
%带宽利用率
for i = 1:M
    tmps = aij(:,i);
    indx = find(tmps==1);
    SC(i)= sum(Ct(indx))/Cn(i);
end
 
02_056m
相关文章
|
3月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
333 0
|
3月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
223 0
|
3月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
3月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
195 8
|
3月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
208 8
|
3月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
3月前
|
机器学习/深度学习 算法
采用蚁群算法对BP神经网络进行优化
使用蚁群算法来优化BP神经网络的权重和偏置,克服传统BP算法容易陷入局部极小值、收敛速度慢、对初始权重敏感等问题。
351 5
|
3月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
3月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
181 0

热门文章

最新文章