m基于matlab的里德-穆勒码Reed Muller(RM)编码译码误码率仿真分析

简介: m基于matlab的里德-穆勒码Reed Muller(RM)编码译码误码率仿真分析

1.算法描述

   1948年,Bell实验室的C.E.Shannon(香农)发表了《通信的数学理论》,Shannon在该文中指出,任何一个通信信道都有确定的信道容量C,如果通信系统所要求的传输速率R小于C,则存在一种编码方法,当码长n充分大并应用最大似然译码(MLD:MaximumLikelihoodDecdoding)时,信息的错误概率可以达到任意小。
   Shannon指出了可以通过差错控制码在信息传输速率不大于信道容量的前提下实现可靠通信,但却没有给出具体实现差错控制编码的算法。
   1954,Muller提出一种差错控制编码的算法,此后Reed在Muller提出的分组码的基础上得到了一种新的分组码,称为 Reed-Muller码(雷德-穆勒),简记为 RM码。在1969年到1977年之间, RM码在火星探测方面得到了极为广泛的应用。其快速的译码算法非常适合于光纤通信系统。

    在Golay码提出之后最主要的一类分组码就是Reed-Muller码。它是Muller在1954年提出的,此后Reed在Muller提出的分组码的基础上得到了一种新的分组码,称为Reed-Muller码,简记为RM码。在1969年到1977年之间,RM码在火星探测方面得到了极为广泛的应用。即使在今天,RM码也具有很大的研究价值,其快速的译码算法非常适合于光纤通信系统。

   Reed-Muller(RM)码是一类经典的纠错编码,其编码和译码算法都拥有较低的复杂度,容易通过硬件电路实现。此外,RM码可以通过改变参数形成结构丰富的子类,能够适应不同信道。RM码自上世纪五十年代被Muller和Reed提出至今,已被应用在多种通信系统中,包括深空通信、蜂窝网络等.Reed-Muller(RM)码是一类经典的纠错编码,其编码和译码算法都拥有较低的复杂度,容易通过硬件电路实现。此外,RM码可以通过改变参数形成结构丰富的子类,能够适应不同信道。

1.png
2.png
3.png

RM码由( r , m ) (r,m)(r,m)两个参数定义,记作RM(r,m)。其中满足0 ≤ r ≤ m 0\le r\le m0≤r≤m,含义为:

4.png

2.仿真效果预览
matlab2013b仿真如下:

5.png
6.png
7.png

3.MATLAB核心程序

M = 2;
[mods,demods] = func_modulation(M);
 
%RM编码参数 
r         = 2;
m         = 4;
SNR       = 0:9;
Errs      = zeros(1,length(SNR));
 
[V,N,K,I] = func_rm(r,m);
for k = 1:length(SNR)
    k
    Err = 0;
    Num = 0;
    Len = 10000;
    TL  = 500;  
    Rt  = 11/16;%code rate
    N0  = 10^(-SNR(k)/Rt/10);
    while(Err <= TL)
         k
         Err
         Num = Num + 1;
         %产生数据
         Signal    = randint(1,K,M,Len);
         %RM编码
         Signal_RM = func_Encode(Signal,V);
         %调制
         RM_mod    = modulate(mods,Signal_RM);
         %过信道
         RM_Noise  = RM_mod + sqrt(N0)*randn(size(RM_mod)); 
         %解调
         RM_demod  = demodulate(demods,RM_Noise);
         %RM译码
         Bhat = func_Decode(RM_demod,r,m,V,N,K,I); 
         %计算误码率
         Err  = Err + sum(xor(Bhat,Signal));
    end
    Errs(k) = Err/Num/length(Signal);
end    
01_096_m
相关文章
|
2月前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
123 0
|
2月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
182 0
|
2月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
2月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
3月前
|
机器学习/深度学习 边缘计算 算法
【无人机】无人机群在三维环境中的碰撞和静态避障仿真(Matlab代码实现)
【无人机】无人机群在三维环境中的碰撞和静态避障仿真(Matlab代码实现)
199 0
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
245 0
|
2月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
121 0
|
2月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
109 0
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
168 8

热门文章

最新文章