【手写数字识别】基于模板匹配算法实现单个或连续手写数字识别系统附GUI

简介: 【手写数字识别】基于模板匹配算法实现单个或连续手写数字识别系统附GUI

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

人类文明的发展离不开信息的传递.文字一直是人们传递信息的一个重要媒介,承载着记录人类文明的重要使命.随着科技的发展,积累的文字信息日益增多,有效的存储和利用这些文字信息成为一个亟待解决的问题.光学字符识别的出现为这一问题提供了解决方法.手写体数字识别是光学字符识别的重要分支,因其在金融,邮政,医疗,交通,教育等领域中广泛的应用而日益被重视.目前,已有多种手写体数字识别算法,但都很难满足手写体数字识别应用时对识别率近乎百分之百的要求,所以,几乎没有能够实际应用的识别算法.

⛄ 部分代码

I1=rgb2gray(I);   %转化为灰度图像

I2=edge(I1,'canny',graythresh(I)*0.7);   %边缘检测

I2=imdilate(I2,ones(3,3));

I2=imfill(I2, 'holes');

I2=imerode(I2,ones(3,3));

[x,y]=find(I2==1);    %找到数字的部分

X=round(mean(x));    %取对象的横向平均位置

I3=I2(X,:);    %取出这一部分(相当于在原图像中选了一条横线)

wz=find(I3==1);  %找到对象的部分

j=0;   %计数设置为0

% figure

while ~isempty(wz)

   j=j+1;  %计数+1

   seed=[X,wz(1)];   %更新种子点

   new=false(size(I2));  %生成逻辑零数组保存之后的二值图像

   new(seed(1),seed(2))=true;   %种子点置一

   while true   %开始生长

       for i=1:size(seed,1)    %对每一种子点进行遍历

           new(seed(i,1)-1:seed(i,1)+1,seed(i,2)-1:seed(i,2)+1)=I2(seed(i,1)-1:seed(i,1)+1,seed(i,2)-1:seed(i,2)+1);    %取出周围3*3范围的数字

       end

       [x1,y1]=find(new==1);   %找到新的种子点

       seed1=[x1,y1];   %更新下一次遍历的种子点

       if(length(seed)==length(seed1))   %若本次和下次的种子数一致,则说明生长完成

           break;    %退出

       end

       seed=seed1;   %更新种子点

   end

   pd=find(new(X,:)==1);  %找到本次生长的对象

   wz=wz(length(pd)+1:end);    %将该对象从合集中去除

   [x,y]=find(new==1);   %得到本次对象的位置

   out=I1(min(x)-10:max(x)+10,min(y)-10:max(y)+10);   %将其从原始灰度图像中取出来,注意!这里可能会因为原始灰度图像过小而导致报错

   %figure,imshow(out)

   I_out(j)=mat2cell(out,size(out,1),size(out,2));   %将其放到cell数组中

end

if length(I_out) == 1   %若输入的为单数字图像

   I_out=mat2cell(I1,size(I1,1),size(I1,2));    %直接返回原始数字图像,因为这样精度更好一些

end

end

⛄ 运行结果

⛄ 参考文献

[1]蒋琳琼, 周兴发. 基于相关算法手写数字识别系统的研究与实现[J]. 技术与市场, 2013(4):3.

[2]张婷, 王卓英. 手写体数字计算机识别系统的应用研究[J]. 微型电脑应用, 2016, 32(1):3.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
18天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
201 55
|
6天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
101 66
|
28天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
152 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2天前
|
监控 算法 JavaScript
基于 Node.js Socket 算法搭建局域网屏幕监控系统
在数字化办公环境中,局域网屏幕监控系统至关重要。基于Node.js的Socket算法实现高效、稳定的实时屏幕数据传输,助力企业保障信息安全、监督工作状态和远程技术支持。通过Socket建立监控端与被监控端的数据桥梁,确保实时画面呈现。实际部署需合理分配带宽并加密传输,确保信息安全。企业在使用时应权衡利弊,遵循法规,保障员工权益。
16 7
|
25天前
|
机器学习/深度学习 缓存 人工智能
【AI系统】QNNPack 算法
QNNPACK是Marat Dukhan开发的量化神经网络计算加速库,专为移动端优化,性能卓越。本文介绍QNNPACK的实现,包括间接卷积算法、内存重排和间接缓冲区等关键技术,有效解决了传统Im2Col+GEMM方法存在的空间消耗大、缓存效率低等问题,显著提升了量化神经网络的计算效率。
35 6
【AI系统】QNNPack 算法
|
25天前
|
存储 人工智能 缓存
【AI系统】Im2Col 算法
Caffe 作为早期的 AI 框架,采用 Im2Col 方法优化卷积计算。Im2Col 将卷积操作转换为矩阵乘法,通过将输入数据重排为连续内存中的矩阵,减少内存访问次数,提高计算效率。该方法首先将输入图像转换为矩阵,然后利用 GEMM 库加速计算,最后将结果转换回原格式。这种方式显著提升了卷积计算的速度,尤其适用于通道数较多的卷积层。
49 5
【AI系统】Im2Col 算法
|
25天前
|
存储 机器学习/深度学习 人工智能
【AI系统】Winograd 算法
本文详细介绍Winograd优化算法,该算法通过增加加法操作来减少乘法操作,从而加速卷积计算。文章首先回顾Im2Col技术和空间组合优化,然后深入讲解Winograd算法原理及其在一维和二维卷积中的应用,最后讨论算法的局限性和实现步骤。Winograd算法在特定卷积参数下表现优异,但其应用范围受限。
33 2
【AI系统】Winograd 算法
|
8天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
40 5
|
6天前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
15天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
49 3

热门文章

最新文章