Java利用迪克斯特拉(Dijkstra)算法求拓扑关系最短路径

简介: Java利用迪克斯特拉(Dijkstra)算法求拓扑关系最短路径

 

算法简介

迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学迪家迪杰斯特拉于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点最短路劲算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止。

代码实现思路

1.先初始化源节点(起始点)到其他各个拓扑节点的最短距离,可以用map存放,key为节点,value为节点到源节点的距离。

比如数据库中存储的各个拓扑点的信息,我们需要先把数据库各地拓扑点之间的距离,加载出来,用map和矩阵(二维数组)方式。数据库拓扑信息存储表demo:

id source target dist
1 v1 v2 15.67

soure和target为相连的两个拓扑点,dist是相连接的两个拓扑点之间的距离。

image.gif编辑

2.初始化源节点到各个节点之间的距离时,源节点到自身节点的距离设为0,到不相连或者间接相连的节点距离设置为最大。

3.从源节点开始,不断循环迭代,各个节点到源节点的最短路线和距离,更新距离map里。当循环遍历到目标节点时,即可求出,源节点到目标节点的最短路线和距离。

更多说明,可以看代码注释。

算法思想

求最短路径步骤 [1] 

算法步骤如下: [1] 

G={V,E}

1. 初始时令 S={V0},T=V-S={其余顶点},T中顶点对应的距离值 [1] 

若存在,d(V0,Vi)为弧上的权值 [1] 

若不存在,d(V0,Vi)为∞ [2] 

2. 从T中选取一个与S中顶点有关联边且权值最小的顶点W,加入到S中 [1] 

3. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值 [1] 

重复上述步骤2、3,直到S [1]  中包含所有顶点,即W=Vi为止 [1] 

代码示例

import com.gis.spacedata.domain.entity.tunnel.TunnelTopologyRelEntity;
import lombok.extern.slf4j.Slf4j;
import java.util.*;
@Slf4j
public class PathUtil {
    /**
     * 方法描述: 求最短路径
     *
     */
    public static List<Long> dijkstra(List<TunnelTopologyRelEntity> topologies, long start, long end) {
        int size=topologies.size();
        Map<String, Double> distMap = new HashMap<>(size);
        //存放源节点到各个节点的距离key 目标节点,value 源节点到该节点的距离
        Map<Long, Double> dists = new HashMap<>(size);
        //key: 当前节点,value:从原点到达key的最短路径的前驱(上一个)节点
        Map<Long, Long> parent = new HashMap<>(size);
        //被标记最短距离的节点
        Set<Long> markNodes = new HashSet<>(size);
        //获取所有节点列表
        Set<Long> nodes = new HashSet<>(10);
        for (TunnelTopologyRelEntity e : topologies) {
            nodes.add(e.getSource());
            nodes.add(e.getTarget());
            distMap.put(e.getSource() + "-" + e.getTarget(), e.getCost());
        }
        //初始化各个节点到源节点的距离
        for (long node : nodes) {
            if (node == start) {
                dists.put(node, 0d);
            } else {
                dists.put(node, getCost(distMap, start, node));
            }
        }
        // 不断迭代
        while (true) {
            //距离源节点距离最近的节点(还未被标记为离源节点最近的点)
            long closestNode = -1;
            double min = Double.MAX_VALUE;
            for (Map.Entry<Long, Double> entry : dists.entrySet()) {
                if (entry.getValue() < min && !markNodes.contains(entry.getKey())) {
                    min = entry.getValue();
                    closestNode = entry.getKey();
                }
            }
            // 找不到可达的路径了或到达目标点
            if (closestNode == -1 || closestNode==end) {
                break;
            }
            markNodes.add(closestNode);
            for (long node : nodes) {
                double dist = getCost(distMap, closestNode, node);
                // 找到一个为扩展的子节点
                if (dist > 0 && !markNodes.contains(node)) {
                    double new_dist = dists.get(closestNode) + dist;
                    // 新距离小于原始距离,更新
                    if (new_dist < dists.get(node)) {
                        dists.put(node, new_dist);
                        parent.put(node, closestNode);
                    }
                }
            }
        }
        // 倒叙查找到路径
        if (dists.get(end) == Integer.MAX_VALUE) {
            log.info(start + "到" + end + "之间没有最短路径");
            return null;
        } else {
            List<Long> path = new ArrayList<>();
            long current = end;
            path.add(current);
            while (current != start) {
                current = parent.get(current);
                path.add(current);
            }
            //反转
            Collections.reverse(path);
            return path;
        }
    }
    /**
     * 方法描述: 获取相邻节点之间距离
     *
     */
    private static double getCost(Map<String, Double> distMap, long start, long end) {
        if (start == end) {
            return 0;
        }
        Double dist1 = distMap.get(start + "-" + end);
        if (dist1 != null) {
            return dist1;
        }
        Double dist2 = distMap.get(end + "-" + start);
        if (dist2 != null) {
            return dist2;
        }
        return Double.MAX_VALUE;
    }
}

image.gif

实际业务代码中应用:

public List<Long> getPointShortWay(String startCode, String endCode) {
        TunnelTopologyCodeRelEntity startTopologyCodeRel = getTopologyCodeRel(startCode);
        TunnelTopologyCodeRelEntity endTopologyCodeRel = getTopologyCodeRel(endCode);
        if (Func.isNull(startTopologyCodeRel) || Func.isNull(endTopologyCodeRel)) {
            return Collections.emptyList();
        }
        List<TunnelTopologyRelEntity> list=list();
        return PathUtil.dijkstra(list,startTopologyCodeRel.getId(), endTopologyCodeRel.getId());
    }

image.gif

相关文章
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
91 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
2月前
|
算法 搜索推荐 Java
java 后端 使用 Graphics2D 制作海报,画echarts图,带工具类,各种细节:如头像切割成圆形,文字换行算法(完美实验success),解决画上文字、图片后不清晰问题
这篇文章介绍了如何使用Java后端技术,结合Graphics2D和Echarts等工具,生成包含个性化信息和图表的海报,并提供了详细的代码实现和GitHub项目链接。
141 0
java 后端 使用 Graphics2D 制作海报,画echarts图,带工具类,各种细节:如头像切割成圆形,文字换行算法(完美实验success),解决画上文字、图片后不清晰问题
|
2月前
|
算法 Java 数据中心
探讨面试常见问题雪花算法、时钟回拨问题,java中优雅的实现方式
【10月更文挑战第2天】在大数据量系统中,分布式ID生成是一个关键问题。为了保证在分布式环境下生成的ID唯一、有序且高效,业界提出了多种解决方案,其中雪花算法(Snowflake Algorithm)是一种广泛应用的分布式ID生成算法。本文将详细介绍雪花算法的原理、实现及其处理时钟回拨问题的方法,并提供Java代码示例。
89 2
|
2月前
|
算法 Java Linux
java制作海报一:java使用Graphics2D 在图片上写字,文字换行算法详解
这篇文章介绍了如何在Java中使用Graphics2D在图片上绘制文字,并实现自动换行的功能。
141 0
|
2月前
|
存储 算法 程序员
迪杰斯特拉(Dijkstra)算法(C/C++)
迪杰斯特拉(Dijkstra)算法(C/C++)
|
2月前
|
算法 Java 测试技术
数据结构 —— Java自定义代码实现顺序表,包含测试用例以及ArrayList的使用以及相关算法题
文章详细介绍了如何用Java自定义实现一个顺序表类,包括插入、删除、获取数据元素、求数据个数等功能,并对顺序表进行了测试,最后还提及了Java中自带的顺序表实现类ArrayList。
30 0
|
11天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
17天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
5天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
5天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。