【Tomcat技术专题】循序渐进,分析Servlet容器鼻祖的Server和Service组件原理

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 【Tomcat技术专题】循序渐进,分析Servlet容器鼻祖的Server和Service组件原理

Tomcat系统架构分析


Tomcat 的结构很复杂,但是Tomcat也非常的模块化,找到了Tomcat 最核心的模块,就抓住Tomcat的“七寸”。
复制代码

Tomcat 整体结构


Tomcat的总体结构从外到内进行分布,最大范围的服务容器是Server组件,Service服务组件(可以有多个同时存在),Connector(连接器)、Container(容器服务),其他组件:Jasper(Jasper解析)、Naming(命名服务)、Session(会话管理)、Logging(日志管理)、JMX(Java 管理器扩展服务)、Websocket(交互服务)。



Tomcat总体结构图

image.png

从上图中可以看出 Tomcat 的心脏是两个组件:Connector 和 Container,关于这两个组件将在后面详细介绍。


Connector 组件是可以被替换,这样可以提供给服务器设计者更多的选择,因为这个组件是如此重要,不仅跟服务器的设计的本身,而且和不同的应用场景也十分相关,所以一个 Container 可以选择对应多个 Connector。 多个 Connector 和一个 Container 就形成了一个 Service。


Service的概念大家都很熟悉了,有了 Service 就可以对外提供服务了,但是 Service 还要一个生存的环境,必须要有人能够给她生命、掌握其生死大权,那就非 Server 莫属了。所以整个 Tomcat 的生命周期由Server 控制。



从表层看Tomcat是如何运作的?


Tomcat内部的servlet容器是一个复杂的系统。不过,一个servlet容器要为一个servlet的请求提供服务,基本上有三件事要做:


  • 创建一个request对象并填充那些有可能被所引用的servlet使用的信息,如参数、头部、cookies、查询字符串、URI等等
  • request:javax.servlet.ServletRequestjavax.servlet.http.ServletRequest接口的一个实例。
  • 创建一个response对象,所引用的servlet使用它来给客户端发送响应
  • response:javax.servlet.ServletResponsejavax.servlet.http.ServletResponse接口的实例
  • 调用servlet的service方法,并传入request和response对象。在这里servlet会从request对象取值,给 response写值。




从里层看Tomcat是如何运作的?


以 Service 作为“婚姻”


我们将 Tomcat 中 Connector、Container 作为一个整体比作一对情 侣的话,Connector 主要负责对外交流,可以比作为Boy,Container 主要处理 Connector 接受的请求,主要是处理内部事务,可以比作 为 Girl。那么这个 Service 就是连接这对男女的结婚证了。是 Service 将它们连接在一起,共同组成一个家庭。当然要组成一个家 庭还要很多其它的元素。


说白了,Service 只是在 Connector 和 Container 外面多包一层, 把它们组装在一起,向外面提供服务,一个 Service 可以设置多个 Connector,但是只能有一个 Container 容器。这个 Service 接口的 方法列表如下:


1) Service 接口


方法列表

image.png

从 Service 接口中定义的方法中可以看出,它主要是为了关联Connector 和 Container,同时会初始化它下面的其它组件,注意接口中它并没有规定一定要控制它下面的组件的生命周期。所有组件的生命周期在一个 Lifecycle 的接口中控制,这里用到了一个重要的设计模式,关于这个接口将在后面介绍。


Tomcat 中 Service 接口的标准实现类是 StandardService 它不仅 实现了 Service 借口同时还实现了 Lifecycle 接口,这样它就可以控制它下面的组件的生命周期了。StandardService 类结构图如下



2) StandardService 的类结构图


方法列表

image.png

从上图中可以看出除了 Service 接口的方法的实现以及控制组件生命周期的 Lifecycle 接口的实现,还有几个方法是用于在事件监听的方法的实现,不仅是这个 Service 组件,Tomcat中其它组件也同样有这几个方法,这也是一个典型的设计模式,将在后面介绍。


下面看一下 StandardService 中主要的几个方法实现的代码,下面是 setContainer 和 addConnector 方法的源码:



3) StandardService. SetContainer
public void setContainer(Container container) {
  Container oldContainer = this.container;
  if ((oldContainer != null) && (oldContainer instanceof Engine))
     ((Engine) oldContainer).setService(null);
    this.container = container;
     if ((this.container != null) && (this.container instanceof Engine))
       ((Engine) this.container).setService(this);
       if (started && (this.container != null) && (this.container instanceof Lifecycle){
         try {
             ((Lifecycle) this.container).start();
         } catch (LifecycleException e) {
             ;
        }
       }
      synchronized (connectors) {
         for (int i = 0; i < connectors.length; i++)
            connectors[i].setContainer(this.container);
         }
         if (started && (oldContainer != null) && (oldContainer instanceof 
                                  Lifecycle)) {
           try {
           ((Lifecycle) oldContainer).stop();
           } catch (LifecycleException e) {
           ;
           }
           }
       support.firePropertyChange("container", oldContainer, this.container);
    }
复制代码


这段代码很简单,其实就是先判断当前的这个 Service 有没有已经关联了 Container,如果已经关联了,那么去掉这个关联关系——oldContainer.setService(null)。如果这个 oldContainer 已经被启动了,结束它的生命周期。然后再替换新的关联、再初始化并开始这个新的 Container 的生命周期。


最后将这个过程通知感兴趣的事件监 听程序。这里值得注意的地方就是,修改 Container 时要将新的Container 关联到每个 Connector,还好 Container 和 Connector 没有双向关联,不然这个关联关系将会很难维护。



4) StandardService. addConnector
public void addConnector(Connector connector) {
  synchronized (connectors) {
    connector.setContainer(this.container);
    connector.setService(this);
    Connector results[] = new Connector[connectors.length + 1];
    System.arraycopy(connectors, 0, results, 0, connectors.length);
    results[connectors.length] = connector;
    connectors = results;
    if (initialized) {
       try {
       connector.initialize();
       } catch (LifecycleException e) {
       e.printStackTrace(System.err);
       }
    }
    if (started && (connector instanceof Lifecycle)) {
       try {
        ((Lifecycle) connector).start();
       } catch (LifecycleException e) {
       ;
       }
    }
    support.firePropertyChange("connector", null, connector);
   } 
}
复制代码


上面是 addConnector 方法,这个方法也很简单,首先是设置关联关系,然后是初始化工作,开始新的生命周期。这里值得一提的是,注意 Connector 用的是数组而不是 List 集合,这个从性能角度考虑可以理解,有趣的是这里用了数组但是并没有向我们平常那样,一开始就分配一个固定大小的数组,它这里的实现机制是:重新创建一个当前大小的数组对象,然后将原来的数组对象 copy 到新的数组中,这种方式实现了类似的动态数组的功能,这种实现方式,值得我们以后拿来借鉴。


最新的 Tomcat6 中 StandardService 也基本没有变化,但是从Tomcat5 开始 Service、Server 和容器类都继承了MBeanRegistration 接口,Mbeans 的管理更加合理。



以 Server 为“居”


前面说一对情侣因为 Service 而成为一对夫妻,有了能够组成一个家庭的基本条件,但是它们还要有个实体的家,这是它们在社会上生存之本,有了家它们就可以安心的为人民服务了,一起为社会创造财富。


Server 要完成的任务很简单,就是要能够提供一个接口让其它程序能够访问到这个 Service 集合、同时要维护它所包含的所有 Service 的生命周期,包括如何初始化、如何结束服务、如何找到别人要访问的 Service。


还有其它的一些次要的任务,如您住在这个地方去登记啊、可能还有要配合当地机关日常的安全检查什么 的。



Server 的类结构图如下:


1) Server 的类结构图

image.png


它的标准实现类 StandardServer 实现了上面这些方法,同时也实现LifecycleMbeanRegistration 两个接口的所有方法,下面主要看一下 StandardServer 重要的一个方法 addService 的实现:


2) StandardServer.addService
public void addService(Service service) {
  service.setServer(this);
  synchronized (services) {
  Service results[] = new Service[services.length + 1];
  System.arraycopy(services, 0, results, 0, services.length);
  results[services.length] = service;
  services = results;
    if (initialized) {
       try {
       service.initialize();
       } catch (LifecycleException e) {
       e.printStackTrace(System.err);
       }
    }
     if (started && (service instanceof Lifecycle)) {
           try {
           ((Lifecycle) service).start();
           } catch (LifecycleException e) {
           ;
           }
    }
    support.firePropertyChange("service", null, service);
 }
}
复制代码

从上面第一句就知道了 Service 和 Server 是相互关联的,Server也是和 Service 管理 Connector 一样管理它,也是将 Service 放在一个数组中,后面部分的代码也是管理这个新加进来的 Service 的生命周期。Tomcat6 中也是没有什么变化的。


组件的生命线“Lifecycle”

前面一直在说 Service 和 Server 管理它下面组件的生命周期,那它们是如何管理的呢?
复制代码

Tomcat 中组件的生命周期是通过 Lifecycle 接口来控制的,组件只要继承这个接口并实现其中的方法就可以统一被拥有它的组件控制了,这样一层一层的直到一个最高级的组件就可以控制 Tomcat 中所有组件的生命周期,这个最高的组件就是 Server,而控制 Server 的是 Startup,也就是您启动和关闭 Tomcat



下面是 Lifecycle 接口的类结构图:


1) Lifecycle 类结构图

image.png

除了控制生命周期的 Start 和 Stop 方法外还有一个监听机制,在生命周期开始和结束的时候做一些额外的操作。这个机制在其它的框架中也被使用,如在 Spring 中。关于这个设计模式会在后面介绍。


Lifecycle 接口的方法的实现都在其它组件中,就像前面中说的,组件的生命周期由包含它的父组件控制,所以它的 Start 方法自然就是调用它下面的组件的 Start 方法,Stop 方法也是一样。如在 Server 中 Start 方法就会调用 Service 组件的 Start 方法,Server 的Start 方法代码如下:



2) StandardServer.Start
public void start() throws LifecycleException {
  if (started) {
        log.debug(sm.getString("standardServer.start.started"));
              return;
  }
  lifecycle.fireLifecycleEvent(BEFORE_START_EVENT, null);
  lifecycle.fireLifecycleEvent(START_EVENT, null);
  started = true;
  synchronized (services) {
    for (int i = 0; i < services.length; i++) {
      if (services[i] instanceof Lifecycle)
        ((Lifecycle) services[i]).start();
      }
    }
  lifecycle.fireLifecycleEvent(AFTER_START_EVENT, null);
}
复制代码


监听的代码会包围 Service 组件的启动过程,就是简单的循环启动所有 Service 组件的Start方法,但是所有 Service 必须要实现Lifecycle 接口,这样做会更加灵活。 Server 的 Stop 方法代码如下:




3) StandardServer.Stop
public void stop() throws LifecycleException {
  if (!started)
    return;
  lifecycle.fireLifecycleEvent(BEFORE_STOP_EVENT, null);
  lifecycle.fireLifecycleEvent(STOP_EVENT, null);
  started = false;
  for (int i = 0; i < services.length; i++) {
    if (services[i] instanceof Lifecycle)
      ((Lifecycle) services[i]).stop();
    }
    lifecycle.fireLifecycleEvent(AFTER_STOP_EVENT, null);
}
复制代码

它所要做的事情也和 Start 方法差不多。




相关文章
|
20天前
|
Kubernetes 调度 Docker
深入探讨容器编排技术:从Docker到Kubernetes
容器编排在现代IT中日益关键,从Docker到Kubernetes,助力应用的自动化部署和扩展。Docker提供容器技术,打包应用及环境为镜像,通过引擎、镜像、容器、网络和存储组件实现隔离运行。Kubernetes作为高级容器编排平台,管理Pod(多容器集合),其核心包括API服务器、控制器管理器、调度器和Kubelet。Kubernetes集群由Master和Worker节点构成,实现Pod的高效调度和运行。
|
21天前
|
运维 Kubernetes 监控
构建高效自动化运维系统:基于容器技术的策略与实践
【4月更文挑战第19天】随着云计算和微服务架构的兴起,传统的运维模式正逐渐向自动化、智能化转型。本文将探讨如何利用容器技术构建一个高效、可靠的自动化运维系统,涵盖系统设计原则、关键技术选型以及实践经验分享。通过引入容器技术,我们可以实现应用的快速部署、弹性伸缩和故障自愈,从而提高运维效率,降低系统维护成本。
|
29天前
|
持续交付 开发者 Docker
深入了解 Docker:革命性的容器化技术
Docker,自2013年起,革新了软件开发和部署,解决了环境差异问题。这个轻量级容器技术基于Linux容器(LXC),提供应用程序隔离和环境一致性。Docker通过容器化实现快速部署、CI/CD集成和微服务架构。相比虚拟机,Docker更轻便,不需模拟完整操作系统。它简化流程,提升效率,促进了容器化技术的普及。
71 0
|
14天前
|
Cloud Native Linux 开发者
【Docker】Docker:解析容器化技术的利器与在Linux中的关键作用
【Docker】Docker:解析容器化技术的利器与在Linux中的关键作用
|
2天前
|
Kubernetes Java 调度
Java容器技术:Docker与Kubernetes
Java容器技术:Docker与Kubernetes
12 0
|
10天前
|
敏捷开发 运维 测试技术
构建高效自动化运维体系:基于容器技术的持续集成与持续部署实践
【4月更文挑战第30天】在数字化转型的浪潮中,企业对软件交付速度和质量的要求日益提高。自动化运维作为提升效率、确保稳定性的关键手段,其重要性不言而喻。本文将探讨如何利用容器技术构建一个高效的自动化运维体系,实现从代码提交到产品上线的持续集成(CI)与持续部署(CD)。通过分析现代容器技术与传统虚拟化的差异,阐述容器化带来的轻量化、快速部署及易于管理的优势,并结合实例讲解如何在实际环境中搭建起一套完善的CI/CD流程。
|
10天前
|
存储 Java 应用服务中间件
Springboot项目打war包部署到外置tomcat容器【详解版】
该文介绍了将Spring Boot应用改为war包并在外部Tomcat中部署的步骤:1) 修改pom.xml打包方式为war;2) 排除内置Tomcat依赖;3) 创建`ServletInitializer`类继承`SpringBootServletInitializer`;4) build部分需指定`finalName`;5) 使用`mvn clean package`打包,将war包放入外部Tomcat的webapps目录,通过startup脚本启动Tomcat并访问应用。注意,应用访问路径和静态资源引用需包含war包名。
|
10天前
|
Linux 开发者 Docker
Docker容器化技术详解
【4月更文挑战第30天】Docker,一个开源的容器化平台,助力开发者通过轻量级容器打包应用及依赖,实现跨平台快速部署。核心概念包括:容器(可执行的软件包)、镜像(只读模板)、Dockerfile(构建镜像的指令文件)和仓库(存储镜像的地方)。Docker利用Linux内核功能隔离容器,采用联合文件系统构建镜像。广泛应用包括开发测试一致性、微服务部署、CI/CD以及本地到远程部署。通过安装Docker,编写Dockerfile,构建&运行容器,可实现高效灵活的应用管理。随着容器技术进步,Docker在云计算和DevOps中的角色日益重要。
|
10天前
|
运维 Kubernetes 持续交付
构建高效自动化运维系统:基于容器技术的持续集成与持续部署实践
【4月更文挑战第30天】 在快速发展的云计算时代,传统的运维模式已无法满足敏捷开发和快速迭代的需求。本文将介绍如何利用容器技术搭建一套高效自动化运维系统,实现软件的持续集成(CI)与持续部署(CD)。文章首先探讨了现代运维面临的挑战,接着详细阐述了容器技术的核心组件和工作原理,最后通过实际案例展示了如何整合这些组件来构建一个可靠、可扩展的自动化运维平台。
|
11天前
|
Kubernetes 安全 持续交付
现代软件开发中的容器化技术探究
本文探讨了现代软件开发中的容器化技术,重点介绍了Docker和Kubernetes这两个主流容器化平台的原理和应用。通过分析容器化技术的优势和挑战,以及在不同开发环境下的应用场景,读者可以更好地理解容器化技术在提升软件开发效率和部署灵活性方面的价值。