深度学习怎么入门?一文弄清楚最常见的专业词汇

简介: 深度学习怎么入门?一文弄清楚最常见的专业词汇

专业词汇


著名的桥水基金创始人Ray Dalio把人比作一部部机器,以及细胞、自然界的生物,也是作为世界中一个个机器在运行。而现实中,人工智能就是我们人类制造的机器,那么我们人类一出生就有的这些直觉,机器可不可以做到呢?判断出中文中的一些词义在某些语境下是褒义还是贬义、识别出视频中某张快速飞过的脸是谁,人工智能能不能做到呢?

 

对于这些问题,《Deep learning》一书探讨了相关的解决办法。

 

那么,人之所以有这些直观的判断,除开某些生物遗传已经设定好的习惯以外——譬如人不会一天睡24个小时也不会冬眠,其他的,很多判断和决策都是基于大量的后天认知所习得的,需要记住非常多的知识。那么这个过程,一些人工智能项目也尝试模仿,比如人工智能的知识库(Knowledge Base) 方法。其中最著名的一个项目Cyc (Lenat and Guha, 1989),其中几乎都是靠人类手动去设计的数据库,人们设法能像机器描述这些规则,但是,这个过程不仅费力且不讨好,Cyc连一个早上剃胡子的人都不能理解,并误以为剃胡子的那个人不是人。因为在Cyc的所知中,人体的结构中是没有剃胡子的电动剃须刀这种电气零件的,所以他觉得正在剃胡子的那个人含有剃须刀这种电器,那么便不一定是人类了。

 

经过这些类似的实践,我们可以发现,只有当机器能够自动地去获取的知识,并根据数据集去学习,才能让人们更加省力,所以必须采取与上面那种方法所不同的方法。在此,开始涉及一些人工智能领域的专业术语,比如深度学习,机器学习,表示学习等,都是人工智能工具进行学习的某种方法或途径。而逻辑回归(logistic regression)以及朴素贝叶斯(naive Bayes)都是简单的机器学习算法。我会用尽量简单易懂的语言来解释这些看似抽象且枯涩难懂的概念,因为《Deep learning》这本书面向的读者主要是计算机专业相关的程序员或者学生,并且有些人已知一些相应的数学概念:比如微积分、线性代数这些,或者已知某些程序语言:比如python等等。

 

机器学习(machine learning)是什么想必大家已早有耳闻,百度百科对机器学习的定义如下:

 

c377a344a8c588440bd79e81bee06dc1.png总之,从宏观上讲,机器学习就是从机器走向人类,如何让机器更接近于人类、更相似于人类,让机器能从过往的这些经验中学习,并做出和人的行为相似的判断和决策。

 

这里还需要引入机器学习领域里表示(representation)的概念,也许是这个概念过于简单,我暂时在本书已阅读过的文本中没有找到相关的解释,并且,这个词在中文里的意思是动词。但显然,在这里,“表示”并不仅仅是一个动词,而在百度百科上是这么解释的:表示是指通过模型的参数,采用何种形式、何种方式来表示模型的输入观测样本X。而表示学习,一般也被称作特征学习表征学习

 

由此,我们可以不用太过于纠结“表示”的意思,重要的是了解表示学习是什么:表示学习是学习一个特征的技术的集合。简单地说,就是让机器(AI系统)来自己提取特征,自己提取最基础的需要被训练的特征集,并且尽量减少人工干预手动设计这些特征。众所周知,假如你想让AI系统完成一个复杂的任务,在这之前若是你手动去设计这些需要被AI系统学习的特征的话,需要耗费研究人员大量的时间,有时候甚至是几十年。

 

那么,可能有人会疑惑,特征又是什么呢?特征这个术语在很多文章里都有提及,举个例子说明一下,我们要判断某个孕妇是否适合剖腹产,不可能是由AI系统来直接给孕妇扫描下身体然后直接说适不适合是吧?而一般情况下,AI系统需要医生来提供一些与孕妇待产有关的信息,比如说有没有子宫疤痕。那么这些信息就是叫做特征,它们可以表示患者的一些情况。

表示学习(representation learning)算法的典型例子是自编码器(autoencoder),它由编码器(encoder)函数和解码器(decoder)函数组成,这是本书中给出的自编码器的运行原理:


8973bbdcba815934c6f5ef739d580d02.png


假设有个任务是识别出一张照片中的车,我们可以拿车轮作为一种特征标识来判断是否是一台车。但是,并不是每张照片中的车轮都是一样的,由于照片中太阳的光线不同以及照射在车轮上的阳光不同、汽车的颜色不一,都有可能改变车轮的显示图像。那么影响车轮观测的这些因素,都叫做变差因素(factors of variation)。这些因素一般很有可能不能如像素一样直接被观测到,而是需要去分析判断,所以有时候提取这些信息其实难度很大,几乎和获取表示的难度一样大。由此,衍生出了深度学习(deep learning),深度学习通过简单的表示来表示复杂的表示。

 

768cbe4b74874b95fd239a56a40befa4.jpg

图片来自https://weibo.com/u/1641824974?is_hot=1

3d03076b6734ee7ee26dcc4050c7d9bd.jpg

图片来自https://wx1.sinaimg.cn/mw600/006TBgxWly1g70pzn23vaj30b408cwet.jpg

36ac56e90e111c4adfcb4c3da0768d91.jpg

图片来自https://wx4.sinaimg.cn/mw600/006TBgxWly1g6xr5wuqtpj30ax05mgo3.jpg

      以上三张图片均来自于网络,侵删


那么,很多读者到此可能会有些疑惑,深度学习、表示学习、机器学习这些词的区别是啥呢?在人工智能领域,机器学习是其中的一部分,而表示学习又是机器学习中的一部分,深度学习则又是表示学习中的一部分。它们之间可以说是一种包含与被包含的关系,在它们独自的算法中,也有类似的处理流程,但从输入到输出的整体处理流程又不一样,而深度学习是一种特定类型的机器学习。

 

有关深度学习的详细运作以及解释将在后面的一些章节中展示出来,此篇属于深度学习笔记连载篇的第二篇。而我大概翻阅了一下整本书,还真有一大部分的讲的是数学。(手动微笑,终于知道为什么有些人说学人工智能最后就是学数学了吧)


目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
4月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:理解神经网络与反向传播算法
【9月更文挑战第20天】本文将深入浅出地介绍深度学习中的基石—神经网络,以及背后的魔法—反向传播算法。我们将通过直观的例子和简单的数学公式,带你领略这一技术的魅力。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你打开深度学习的大门,让你对神经网络的工作原理有一个清晰的认识。
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
73 3
|
2月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习入门案例:运用神经网络实现价格分类
深度学习入门案例:运用神经网络实现价格分类
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
软件工程师,入门下深度学习吧
软件工程师,入门下深度学习吧
67 9
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)入门与实践
【8月更文挑战第62天】本文以浅显易懂的方式介绍了深度学习领域中的核心技术之一——卷积神经网络(CNN)。文章通过生动的比喻和直观的图示,逐步揭示了CNN的工作原理和应用场景。同时,结合具体的代码示例,引导读者从零开始构建一个简单的CNN模型,实现对图像数据的分类任务。无论你是深度学习的初学者还是希望巩固理解的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。
|
4月前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习入门:从理论到实践
【9月更文挑战第22天】本文将带你走进深度学习的世界,从基础的理论概念出发,逐步深入到实践应用。我们将探讨神经网络的工作原理,以及如何通过编程实现一个简单的深度学习模型。无论你是初学者还是有一定基础的学习者,都能在这篇文章中找到有价值的信息。让我们一起揭开深度学习的神秘面纱,探索这个充满无限可能的领域吧!
|
4月前
|
机器学习/深度学习 人工智能 算法
深度学习中的卷积神经网络(CNN)入门与实践
【9月更文挑战第19天】在这篇文章中,我们将探索深度学习的一个重要分支——卷积神经网络(CNN)。从基础概念出发,逐步深入到CNN的工作原理和实际应用。文章旨在为初学者提供一个清晰的学习路径,并分享一些实用的编程技巧,帮助读者快速上手实践CNN项目。
|
4月前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习入门:理解卷积神经网络(CNN)
【9月更文挑战第14天】本文旨在为初学者提供一个关于卷积神经网络(CNN)的直观理解,通过简单的语言和比喻来揭示这一深度学习模型如何识别图像。我们将一起探索CNN的基本组成,包括卷积层、激活函数、池化层和全连接层,并了解它们如何协同工作以实现图像分类任务。文章末尾将给出一个简单的代码示例,帮助读者更好地理解CNN的工作原理。
62 7