基于Windows下Anaconda创建python虚拟环境教程(二)

简介: 基于Windows下Anaconda创建python虚拟环境教程

五(可忽略)、接下来博主在导入创建一个深度学习模型库DeepPurpose的python虚拟环境DeepPurpose并配置的过程,相当于实践一下,只想创建python虚拟环境在第四步就已经成功结束。注意:若用户开启VPN则安装前需要关闭VPN,避免安装不成功。

  • 下载项目代码库到E:/DeepPurpose路径文件下。
git clone https://github.com/kexinhuang12345/DeepPurpose.git E:/DeepPurpose

  • 将路径转到上一步git项目下载到本地的路径,也就是E:/DeepPurpose路径。
E:
cd DeepPurpose

  • 导入E:/DeepPurpose路径下的yml 文件,再根据 yml 文件内容新创建对应虚拟环境(注意:运行下面命令之前必须路径转到yml文件的路径,而且这是新创建一个虚拟环境那么如果是同一台电脑必须删除原同名的虚拟环境或者将原虚拟环境更换名称)。
conda env create -f environment.yml

conda activate DeepPurpose

  • 上步操作只会创建虚拟环境并导入conda命令直接安装的包,但是原虚拟环境大部分pip安装的包需要在新的虚拟环境下pip导入安装通过之前原虚拟环境pip导出的requirements.txt(注意:上步虚拟环境已经创建,若在此步报一些安装错误可以打开requirements.txt文件删除这些报错安装的包,到时候需要再pip单个下载pip之前安装报错的包到此虚拟环境;为保证顺利pip下载,启用https://pypi.douban.com/simple这个镜像可以下载快速顺利,当然不用镜像也可以只不过时间长容易安装超时报错)。
pip install -r requirements.txt -i https://pypi.douban.com/simple

  • 之前创建好的一个python虚拟环境,名称是DeepPurpose(注意:创建python虚拟环境在成功结束后一定要将新创建的虚拟环境的Scripts文件内容添加到环境变量PATH中)。

  • 激活python虚拟环境DeepPurpose。
conda activate DeepPurpose

  • 安装相关python包和库等。
conda install -c conda-forge rdkit

或者

conda install -c rdkit rdkit

conda install -c conda-forge notebook

或者

pip install jupyter notebook

conda install -c conda-forge scikit-learn

或者

pip install scikit-learn

pip install rdkit-pypi

pip install git+https://github.com/bp-kelley/descriptastorus 

或者先通过github链接将项目下载到本地,然后转此项目setup.py文件,然后执行下面的命令:

python setup.py install

pip install DeepPurpose

六、若在python虚拟环境中(博主举例python虚拟环境是rothschildlhl)出现“pip-script.py’ is not present.”类似的错误,原因在于pip更新不成功,原来的pip版本也被破坏。

  • 更新pip命令
pip install --upgrade pip

  • 解决错误,根据下面命令重新安装最新版本pip
conda activate rothschildlhl
python -m ensurepip
python -m pip install --upgrade pip

七、Conda导出导入和更新虚拟环境

  • 激活(切换)到需要导出的虚拟环境(博主举例以之前创建的虚拟环境transformers为例)。
conda activate transformers

  • 将虚拟环境transformers导出保存为yml文件并命名为xrlhl.yml,此操作只会导出conda命令直接安装的包,原虚拟环境大部分pip安装的包需要pip导出安装库到pip.txt,后续再导入到新虚拟环境(注意:默认导出文件到命令行前面的路径,博主举例的是C:\Users\25216,可以见下图)。
conda env export > xrlhl.yml
pip freeze >pip.txt

  • 导入yml 文件,再根据 yml 文件内容新创建对应虚拟环境(注意:运行下面命令之前必须路径转到yml 文件的路径,而且这是新创建那么如果是同一台电脑必须删除原同名的虚拟环境或者将原虚拟环境更换名称)。
conda env create -f xrlhl.yml
conda activate transformers
pip install -r pip.txt

  • 根据 yaml(yml)文件更新已经创建的虚拟环境(注意:博主举例是xrlhl.yml文件更新虚拟环境DeepPurpose)。
conda env update -n DeepPurpose --file xrlhl.yml

相关文章
|
18天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
45 8
|
18天前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
55 7
|
18天前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
46 4
|
18天前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
40 5
|
Python
python虚拟宠物
点击(此处)折叠或打开 [18:15 t ~/PycharmProjects/talen]$ ll -rw-rw-r--.
1702 0
|
28天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
26天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
15天前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
102 80
|
2月前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
148 59
|
4天前
|
Python
[oeasy]python055_python编程_容易出现的问题_函数名的重新赋值_print_int
本文介绍了Python编程中容易出现的问题,特别是函数名、类名和模块名的重新赋值。通过具体示例展示了将内建函数(如`print`、`int`、`max`)或模块名(如`os`)重新赋值为其他类型后,会导致原有功能失效。例如,将`print`赋值为整数后,无法再用其输出内容;将`int`赋值为整数后,无法再进行类型转换。重新赋值后,这些名称失去了原有的功能,可能导致程序错误。总结指出,已有的函数名、类名和模块名不适合覆盖赋新值,否则会失去原有功能。如果需要使用类似的变量名,建议采用其他命名方式以避免冲突。
25 14