MySQL索引与事务

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 本文主要介绍MySQL的索引与事物,以及一些常考的面试题。

1.索引


1.1 作用及代价


我们在看书时,为了提高查阅的效率,引入了目录;索引的作用,就与目录作用相同,同样是为了提高查询的效率。


有得必有失,索引在提高查询效率的同时,也做出了一些代价。

1.消耗了更多的空间

2.虽然提高了查询的效率,但是降低了插入、删除、修改的效率(例如在进行插入数据时,又需要重新调整索引,就会降低一定的效率)


但在大多情况下,查询的频率要远大于插入、删除、修改的频率,所以索引还是经常使用的。


1.2 使用


在创建主键约束(primary key)、唯一约束(unique)、外键约束(foreign key)时,会自动创建对应列的索引。


查看索引

show index from 表名;

创建索引

对于非主键、非唯一约束、非外键的字段,可以创建普通索引


create index 索引名 on 表名(字段名);

删除索引

drop index 索引名 on 表名;

1.3 背后的数据结构


相信在认真看过博主的【数据结构专栏】后,各位小主一定对数据结构有一定的了解了。我们知道的可以提高搜索效率的数据结构有二叉搜索树和哈希表,但是这两种数据结构都不适合于做为数据库的索引。


哈希表:虽然查询效率可以达到O(1),但是只能查询值相等的情况,在 > < between and等比较大小的方式进行查询时就不适用了。


二叉搜索树:在最坏的情况下(单支树)时间复杂度为O(N),最好情况为O(log2N),如果在数据库的数据较多时,搜索树的高度将会非常高,也不适合。


所以聪明的程序猿就想出了B+树这种数据结构,专门服务于数据库的索引,在了解B+树之前,我们来先了解B

树,然后再进一步了解B+树。


1.3.1 B树


B树其实就是一个N叉搜索树,每个节点上最多包含N-1个值,N-1个值可以把区间划分成N份,通过这样分成N个叉,就使得由原来的二叉搜索树的高度降低了很多。


具体结构见下图:


微信图片_20230111124725.png

1.3.2 B+树


1.B+树每个节点的N个值最多可以分N个区间,而B树每个节点的N-1个值最多可以分N个区间。

2.B树中值不能重复出现,但B+树中值是可能重复出现的。(父元素的值会在子元素中以最大值/最小值的形式出现)

3.在叶子节点处,B+树会把所有的叶子节点以链表的形式首尾相连,这样的结构将会非常便于查找。

4.因为B+树的叶子节点是全集数据,所以在非叶子节点,只需要保存索引即可(只存id),这样非叶子节点占用的空间将会非常小,就可以在内存中缓存;只在叶子节点才存储具体data信息。


微信图片_20230111124721.png


2.事务


2.1 为什么使用事物?(核心特性)


有这样一个场景:在张三给李四转账时,需要先将钱从张三账户中转出,再转入李四账户中,完成这样的功能需要两条sql语句才能完成(如下图),但若在完成第一条sql语句后数据库出现了问题,无法继续执行第二条语句时,便会出现平白无故减少500元的问题。


微信图片_20230111124712.png

为了解决上述问题,必须保证两条SQL语句要么都执行,要么一条也不执行。这就是事物的原子性,即逻辑上的一组操作,组成这组操作的各个单元,要么全部成功,要么全部失败。


2.2 使用


(1)开启事务:start transaction;

(2)执行多条SQL语句

(3)回滚或提交:rollback/commit;

说明:rollback即是全部失败,commit即是全部成功。

示例:


start transaction;
-- 阿里巴巴账户减少2000
update accout set money=money-2000 where name = '阿里巴巴';
-- 四十大盗账户增加2000
update accout set money=money+2000 where name = '四十大盗';
commit;


2.3 事物的其他特性


事物共有四大特性,在2.1中已经介绍了事物的原子性,这是事物最核心的特性,除了原子性外,还有另外三个特性。


特性 特性 作用
原子性 是事务的根本所在,能够把多个SQL打包成一个整体,要么都执行完,要么都不执行(如果执行过程中出错,则自动回滚)
一致性 事务执行前后,数据处于“一致的状态”(数据需要合理)
持久性 事务进行的改动,是写入硬盘的,不会随着程序重启/主机重启而丢失。
隔离性 在多个事务并发执行的时候,事务之间能够保持“隔离”,互不干扰(具体介绍见2.4)


2.4 事物隔离(重点特性)


2.4.1 脏读、不可重复读与幻读


脏读:


一个事务A在修改数据,提交之前,另一个事务B读取了数据,此时A在B读完后又进行了修改,那么事务B所读取到的数据就是“无效的数据”,这就叫做脏读


我们引入这样的一个场景,来更好的解释这些问题。


小明正在宿舍敲老师布置的代码练习题【修改数据的事务】,这时候小赖悄悄的在后边看小明写的代码【读取数据的事务】,小赖看完以后,就去自己的电脑上敲了,这时候小明发现了一些问题,又对代码进行了修改。

此时小赖所读取到的数据就是一个脏数据【脏读问题】,读到的数据只是一个临时数据,并不代表最终结果。


为了解决脏读问题,我们需要让在提交操作之前,不能读取数据(相当于是对写操作加锁)。


不可重复读:


在一个事务A中,事务B多次读取同一个数据,得到的结果不同(在读的过程中被人修改了)


小明和小赖约定好,小明会在他写完他的代码练习后,将代码上传到GitHub上,让小赖看他的GitHub。

于是小明在完成代码练习后上传至GitHub,然而在小赖在GitHub上看小明的代码时,小明又有了新的想法,于是对代码又进行了修改并再次提交。这时小赖正在读着的代码发生了改变。


为了解决不可重复读的问题,需要使用读加锁来解决。


也就是小明和小赖约定好,在小明写的时候小赖不去看,同时在小赖读的时候,小明也不去改。


幻读:


事务B两次读取虽然关心的数据相同,但是结果集变了

(可能原来只有一个.java文件,再下次读的时候就是两个.java文件了),这种情况被称为“幻读”,可以视为是“不可重复读”的特殊情况。


小明对小赖说,你先看A题的代码,我去改改B题,这样并不会影响你正在看的数据,但是小赖在小明改代码前后,虽然他关心的A题代码并没有发生变动,但是结果集发生了变化。


为了解决幻读问题,需要执行“串行化”


小明必须和小赖约定好,小明在写代码的时候,小赖不看;小赖在读取代码的时候,小明必须关上电脑,代码一点也不改动。


2.4.2 事务隔离级别


上述脏读、不可重复读、幻读的问题都是在并发执行事务中可能带来的影响,但是产生这些影响,并不一定就是bug。

是不是bug,需要根据实际需求来决定。我们需要看实际需求中对于数据的精确度要求。


如果需求对于数据精确度要求不高(比如抖音视频的点赞数,B站的投币数),那么上述问题就不是bug,因此就可以让并发程度高一些,隔离性低一些,提高效率。

如果需求对于数据精确度要求很高(比如银行转账),那上述的问题就是bug,因此就得让并发程度低一些,隔离性高一些,提高准确度。


为了满足不同的需求,MySQL提供了“隔离级别”选项,给了我们四个等级,让我们根据实际需求来选择不同的等级,以平衡效率和准确性。


下述表格中x代表可能存在的问题,√代表能够解决的问题。


隔离级别 分析 脏读 不可重复读 幻读
读未提交(Read Uncommitted) 允许读未提交的数据,并发程度最高,隔离性最低 × × ×
读已提交(Read Committed) 只能读提交以后的数据(相当于写加锁),并发程度降低,隔离性提高 × ×
可重复读(Repeatable Read) 相当于读和写都加锁了,并发程度再降低,隔离性再提高 ×
串行化(Serializable) 严格执行串行化,并发程度最低,隔离性最高


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
2月前
|
SQL 关系型数据库 MySQL
MySQL锁机制:并发控制与事务隔离
本文深入解析了MySQL的锁机制与事务隔离级别,涵盖锁类型、兼容性、死锁处理及性能优化策略,助你掌握高并发场景下的数据库并发控制核心技巧。
|
3月前
|
存储 监控 Oracle
MySQL事务
MySQL事务具有ACID特性,包括原子性、一致性、隔离性和持久性。其默认隔离级别为可重复读,通过MVCC和间隙锁解决幻读问题,确保事务间数据的一致性和并发性。
MySQL事务
|
4月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
4月前
|
存储 关系型数据库 MySQL
MySQL数据库索引的数据结构?
MySQL中默认使用B+tree索引,它是一种多路平衡搜索树,具有树高较低、检索速度快的特点。所有数据存储在叶子节点,非叶子节点仅作索引,且叶子节点形成双向链表,便于区间查询。
156 4
|
6月前
|
存储 关系型数据库 MySQL
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
|
1月前
|
关系型数据库 MySQL 数据库
【赵渝强老师】MySQL的事务隔离级别
数据库并发访问时易引发数据不一致问题。如客户端读取到未提交的事务数据,可能导致“脏读”。MySQL通过四种事务隔离级别(读未提交、读已提交、可重复读、可序列化)控制并发行为,默认为“可重复读”,以平衡性能与数据一致性。
191 0
|
2月前
|
关系型数据库 MySQL 数据库
MySql事务以及事务的四大特性
事务是数据库操作的基本单元,具有ACID四大特性:原子性、一致性、隔离性、持久性。它确保数据的正确性与完整性。并发事务可能引发脏读、不可重复读、幻读等问题,数据库通过不同隔离级别(如读未提交、读已提交、可重复读、串行化)加以解决。MySQL默认使用可重复读级别。高隔离级别虽能更好处理并发问题,但会降低性能。
106 0
|
4月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
121 2
|
4月前
|
安全 关系型数据库 MySQL
mysql事务隔离级别
事务隔离级别用于解决脏读、不可重复读和幻读问题。不同级别在安全与性能间权衡,如SERIALIZABLE最安全但性能差,READ_UNCOMMITTED性能高但易导致数据不一致。了解各级别特性有助于合理选择以平衡并发性与数据一致性需求。
170 1
|
5月前
|
存储 关系型数据库 MySQL
MySQL覆盖索引解释
总之,覆盖索引就像是图书馆中那些使得搜索变得极为迅速和简单的工具,一旦正确使用,就会让你的数据库查询飞快而轻便。让数据检索就像是读者在图书目录中以最快速度找到所需信息一样简便。这样的效率和速度,让覆盖索引成为数据库优化师傅们手中的尚方宝剑,既能够提升性能,又能够保持系统的整洁高效。
153 9

推荐镜像

更多