谷歌开源 Embedding Projector 高维数据可视化

简介:

近段时间以来,机器学习领域内的进展已经催生出了很多激动人心的结果,其应用已经延展到了图像识别、语言翻译、医学诊断等许多领域。对研究科学家来说,随着机器学习系统的广泛应用,理解模型解读数据的方式正变得越来越重要。但是,探索数据的一大主要难题是数据往往具有数百个乃至数千个维度,这需要我们使用特别的工具才能研究调查清楚数据空间。

为了实现一种更为直观的探索过程,谷歌今日布开源了一款用于交互式可视化和高维数据分析的网页工具 Embedding Projector,其作为 TensorFlow 的一部分,能带来类似 A.I. Experiment 的效果(参阅:业界 | 谷歌推出 A.I. Experiments:让任何人都可以轻松实验人工智能)。同时,谷歌也在 projector.tensorflow.org 放出了一个可以单独使用的版本,让用户无需安装和运行 TensorFlow 即可进行高维数据的可视化

image

探索嵌入(embeddings)

训练机器学习系统所需的数据一开始的形式是计算机无法直接理解的。为了将这些我们人类能够自然而然理解的东西(如:话语、声音或视频)翻译成算法能够处理的形式,我们会使用到嵌入(embeddings)——一种获取了数据的不同方面(即:维度 dimension)的数学向量表征。比如说,在一个语言嵌入中,相似的词会被映射到彼此相近的点。

image

降维的方法

Embedding Projector 提供了三种常用的数据降维(data dimensionality reduction)方法,这让我们可以更轻松地实现复杂数据的可视化,这三种方法分别是 PCA、t-SNE 和自定义线性投影(custom linear projections):

PCA 通常可以有效地探索嵌入的内在结构,揭示出数据中最具影响力的维度。

t-SNE 可用于探索局部近邻值(local neighborhoods)和寻找聚类(cluster),可以让开发者确保一个嵌入保留了数据中的所有含义(比如在 MNIST 数据集中,可以看到同样的数字聚类在一起)。

自定义线性投影可以帮助发现数据集中有意义的「方向(direction)」,比如一个语言生成模型中一种正式的语调和随意的语调之间的区别——这让我们可以设计出更具适应性的机器学习系统。

image

在一个拥有 3.5 万个电子邮件常用短语的语料库中,「see attachment」的 100 个最近的点到「yes」-「yeah」向量上(yes 在右,yeah 在左)的自定义线性投影

谷歌的博客写道:

Embedding Projector 网站包括一些可供试玩的数据组。我们也让用户更容易使用它并与其他人共享他们的嵌入(仅需点击左边的 publish 按钮)。我们希望 Embedding Projector 能有效帮助研究社区探索并调节他们的机器学习应用,也让所有人更好地理解机器学习算法如何解读数据。如果对 Embedding Projector 细节有兴趣,请阅读我们的论文。祝你在嵌入的世界里玩得开心!

以下是论文摘要:

image

摘要:嵌入在机器学习领域,比如推荐系统、NLP 以及许多其他应用领域中很常见。研究人员和开发者常常需要探索某个具体嵌入的属性,并找到分析嵌入的方法以将它们视觉化。我们为交互式可视化和嵌入的诠释工作推出了 Embedding Projector 这款工具。

文章转载自 开源中国社区 [http://www.oschina.net]

目录
相关文章
|
机器学习/深度学习 自然语言处理 搜索推荐
为什么说多模态是推荐系统破局的关键?来自饿了么一线的实战复盘
推荐系统作为互联网时代连接用户与信息的核心技术,正在经历从传统协同过滤向多模态智能推荐的重要变革。随着深度学习技术的快速发展,特别是大语言模型和多模态预训练技术的成熟,推荐系统开始从单纯依赖用户行为ID特征转向充分利用商品图像、文本描述等丰富内容信息的新范式。
543 18
|
存储 Python
python实现图片与视频转换:将视频保存为图片,将批量图片保存为视频
python实现图片与视频转换:将视频保存为图片,将批量图片保存为视频
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
872 4
|
数据采集 存储 人工智能
AI 模型:数据收集和清洗
AI 模型:数据收集和清洗
1504 2
|
数据可视化 数据挖掘 API
matplotlib字体设置看这一篇就够了
matplotlib字体设置看这一篇就够了
748 3
|
人工智能 计算机视觉
李飞飞空间智能系列新进展,吴佳俊团队新BVS套件评估计算机视觉模型
【5月更文挑战第29天】李飞飞教授的SVL实验室与吴佳俊团队推出BEHAVIOR Vision Suite(BVS),一个创新工具包,用于生成定制合成数据以评估计算机视觉模型。BVS解决了现有数据生成器在资产、多样性和真实性方面的局限,提供灵活的场景、对象和相机参数调整。它包含8000多个对象模型和1000个场景,适用于多种视觉任务。实验展示了BVS在评估模型鲁棒性、场景理解和域适应中的效用,但也指出其在覆盖范围、使用难度和域适应上的局限。[论文链接](https://arxiv.org/pdf/2405.09546)
332 4
|
运维 监控 网络虚拟化
|
域名解析 缓存 网络协议
探索Qt 网络编程:网络地址与服务类全解析
探索Qt 网络编程:网络地址与服务类全解析
522 0
|
索引 Python
获取dataframe的第一行
在pandas中,可以使用`iloc`函数获取dataframe的第一行。以下是一个例子
1649 0