开源性能可视化工具——FlameScope模式识别

简介: # 文章翻译 [原文链接](http://www.brendangregg.com/blog/2018-11-08/flamescope-pattern-recognition.html) FlameScope是一个新的开源性能可视化工具,它使用次秒级偏移热图和火焰图来分析周期活动、方差、扰动。

文章翻译

原文链接

FlameScope是一个新的开源性能可视化工具,它使用次秒级偏移热图和火焰图来分析周期活动、方差、扰动。我们在Netflix TechBlog上面,发表了技术文章Netflix FlameScope,以及工具的源代码火焰图很好理解,次秒级偏移热图理解起来要困难些(我最近发明的它)。FlameScope可以该帮助你理解后者。

总而言之,次秒级偏移热图是这样的:x轴是一整秒,y轴是这一秒里的几分之一秒。这每个几分之一秒都被称作一个桶(或者说盒),表示这几分之一秒里,事件数量的聚合。盒子颜色深度表示发生的次数,颜色越深表示次数越多。

下图一个真实的CPU上的次秒级偏移热图样本:

1.png

这张图中能分析出什么信息来呢?为了能把各种不同模式区分开来展示,我在这篇文章里先画了一些人工合成的样本。实际使用FlameScope工具时,可以选择你的各个模式,还能生成火焰图,显示对应的代码路径(这里我不展示火焰图)。

周期活动

1 . 一个线程,每秒一次

2.png

线程在每秒钟内的同样的偏移里醒来,做几毫秒的工作,然后回到睡眠。

2 . 一个线程,两次每秒

3.png

每500ms唤醒一次。既可能是两个线程,也可能是一个线程500ms 唤醒一次。

3 . 两个线程

4.png

看起来像两个线程均1s唤醒一次

4 . 一个忙等待线程,每秒一次

5.png

这个线程做约20ms的工作,然后睡1s。这是一个常见的模式,导致每秒钟唤醒抵消匍匐前进。

5 . 一个忙等待线程,两次每秒

6.png

每500ms唤醒一次。有可能是单线程程序,每秒唤醒两次。

6 . 一个计算较密集的忙等线程

7.png

斜率高,每秒做更多的工作,大约是80毫秒。

7 . 一个计算较不密集的忙等线程

8.png

斜率低,每秒做的工作较少,可能只有几毫秒。

8 . 一个忙等待线程,每5秒钟唤醒一次

9.png

现在5秒唤醒一次。

我们可以根据夹角和唤醒的时间间隔,计算每个唤醒的CPU繁忙时间:
busy_time = (1000 ms / (热图行数 时间长度) tan(夹角)
例如45°夹角的线:
busy_time = (1000 ms / (501)) tan(45) = 20ms

方差

9 . cpu利用率100%

10.png

这是CPU完全被用满的样子

10 . cpu利用率50%

11.png

真实的工作负载更像是这样,是由短请求、随机到达组成的。

11 . cpu利用率25%

12.png

相同的工作负载类型,大小在25%。

12 . cpu利用率5%

13.png

相同的工作负载类型,大小在5%。

13 . 负载增加

14.png

在2分钟的尺度上,负载在变重。

14 . 变化的负荷

15.png

每30秒就有5秒的工作负载较重。

扰动

15 . CPU扰动
16.png

时不时地所有CPU都满载个100ms。(比如垃圾回收)

16 . CPU阻塞
17.png

时不时地所有CPU都空载个100ms。(比如等I/O)

17 . 单线程阻塞
18.png

时不时地,只有一个CPU没有idle(表现为粉红色长条,而不是白色长条)。(比如全局锁)

最后这个模式很有趣:它发生在一个当前运行的线程持有一把锁,而其它所有线程都阻塞在这把锁上。
那么该线程在做什么呢?点击FlameScope的粉色线,就能看到此时的火焰图。复杂的性能问题立刻变简单。

总结

你能从这张图中分析出什么结论?
19.png

实际使用FlameScope工具时,可以选择你的各个模式,还能生成火焰图,显示对应的代码路径。

我和同事Martin Spier(也是该工具的主开发人员)11月8日在LinkedIn性能meetup上发表演讲。

祝你使用FlameScope愉快,欢迎截图分享你遇到有趣的模式!

Brendan

实践

需要补充的是,作者最新的工作,将强大的Differential Flame Graph也集成到FlameScope中了,现在交互式地在FlameScope上,选择两个测试集以及对应的时间段,对比两个测试组的事件采样。

我在使用FlameScope时,发现并fix了FlameScope的若干bug。也包括Differential Flame Graph跑不起来的一些bug。之后我便用它来进行了一些性能问题的复现。还发现其中一些有趣的模式。

首先,我想分析两个测试组的调度特征。我对他们分别进行了perf sched record采样,并使用FlameScope进行了数据可视化。

性能好的分组
客户端
image.png
服务端
image.png
性能差的分组
客户端
image.png
服务端
image.png

我们发现性能差的分组,有大量的调度事件,而且发生地非常均匀。性能好的分组则是周期性地繁忙工作若干毫秒(深红色长条),我们还能发现背景里有周期性的轻松任务(浅红色长条)

这个对比,给了我们这两个测试集的调度特征一个直观的感受。但看来分析问题需要借助更多的信息。

于是我使用了Differential Flame Graph分析两个测试集的完整调用栈上的采样。

image.png

该图便给出一个重要线索,两个测试集最重大的区别,在vfs_write->do_sync_write->sock_aio_write->inet_sendmsg->copy_user_enhanced_fast_string这条路径上。(注意由于内核编译优化等原因,调用路径略有不准确)

性能好的测试组,多调用了很多次copy_user_enhanced_fast_string,性能差测试组的则很少。

之后的工作便于FlameScope关系不大了。这便是我使用FlameScope工具进行测试和性能调优的一个实践。Bredan Gregg大神主导的这个软件,对性能数据阐释的直观性真的太强了~

相关文章
|
14天前
|
机器学习/深度学习 数据采集 人工智能
R语言是一种强大的编程语言,广泛应用于统计分析、数据可视化、机器学习等领域
R语言是一种广泛应用于统计分析、数据可视化及机器学习的强大编程语言。本文为初学者提供了一份使用R语言进行机器学习的入门指南,涵盖R语言简介、安装配置、基本操作、常用机器学习库介绍及实例演示,帮助读者快速掌握R语言在机器学习领域的应用。
43 3
|
14天前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
34 2
|
3月前
|
机器学习/深度学习 数据采集 监控
深度学习之可视化工具
基于深度学习的可视化工具旨在帮助研究人员和实践者更好地理解和解释深度学习模型的行为、性能和决策过程。这些工具通过图形界面和可视化技术,使得复杂的模型和数据变得更为直观和易于理解。
48 0
|
6月前
|
机器学习/深度学习 数据可视化 Linux
深度学习模型可视化工具——Netron使用介绍
深度学习模型可视化工具——Netron使用介绍
956 2
|
机器学习/深度学习 存储 人工智能
机器学习模型可视化的最佳工具(Neptune)
“每个模型都是错误的,但有些模型是有用的”,这句话在机器学习中尤其适用。在开发机器学习模型时,您应该始终了解它在哪里按预期工作以及在哪里失败。 您可以使用许多方法来获得这种理解:
|
机器学习/深度学习 数据可视化 算法
机器学习可视化利器-Yellowbrick(上)
Yellowbrick简介 Yellowbrick是一款用于促进机器学习模型选择的可视化分析和诊断工具。它在scikit-learn的api基础上做了扩展,能让我们更容易的驾驭模型优化阶段。简而言之,yellowbrick将scikit-learn和matplotlib有机结合起来,通过可视化方式帮助我们优化模型。
|
机器学习/深度学习 数据可视化 数据挖掘
机器学习可视化利器-Yellowbrick(中)
Yellowbrick简介 Yellowbrick是一款用于促进机器学习模型选择的可视化分析和诊断工具。它在scikit-learn的api基础上做了扩展,能让我们更容易的驾驭模型优化阶段。简而言之,yellowbrick将scikit-learn和matplotlib有机结合起来,通过可视化方式帮助我们优化模型。
|
机器学习/深度学习 数据可视化 数据挖掘
机器学习可视化利器-Yellowbrick(下)
Yellowbrick简介 Yellowbrick是一款用于促进机器学习模型选择的可视化分析和诊断工具。它在scikit-learn的api基础上做了扩展,能让我们更容易的驾驭模型优化阶段。简而言之,yellowbrick将scikit-learn和matplotlib有机结合起来,通过可视化方式帮助我们优化模型。
|
机器学习/深度学习 数据采集 Prometheus
机器学习模型监控工具:Evidently 与 Seldon Alibi 对比
每当我们训练和部署机器学习模型时,我们都希望确保该模型在生产中表现良好。 模型需要监控,因为现实世界中发生了我们在训练期间无法解释的事情。最明显的例子是当现实世界的数据偏离训练数据时,或者当我们遇到异常值时。我们使用监控来做出决策,例如:何时重新训练或何时获取新数据。
|
机器学习/深度学习 人工智能 自动驾驶
谷歌开源大规模神经网络模型高效训练库 GPipe
在不调整超参数的情况下,通过部署更多的加速器来进行大规模模型训练
479 0