利用python实现逻辑回归(以鸢尾花数据为例)

简介: 利用python实现逻辑回归(以鸢尾花数据为例)

从广义线性回归推导出逻辑回归

什么是逻辑回归

逻辑回归不是一个回归的算法,逻辑回归是一个分类的算法,就比如卡巴斯基不是司机。 那为什么逻辑回归不叫逻辑分类?因为逻辑回归算法是基于多元线性回归的算法。而正因为 此,逻辑回归这个分类算法是线性的分类器。未来我们去学的基于决策树的一系列算法,基 于神经网络的算法等那些是非线性的算法。SVM 支持向量机的本质是线性的,但是也可以 通过内部的核函数升维来变成非线性的算法。


Sigmoid 作用

逻辑回归就是在多元线性回归基础上把结果缩放到 0 到 1 之间。 h (x) 越接近+1 越是 正例, h (x) 越接近 0 越是负例,根据中间 0.5 分为二类。

为什么逻辑回归要用 sigmoid 函数

       什么事情,都要做到知其然,知其所以然,sigmoid 函数的数学公式推导,我们知道 二分类有个特点就是正例的概率+负例的概率=1。一个非常简单的试验是只有两个可能结 果的试验,比如正面或反面,成功或失败,有缺陷或没有缺陷,病人康复或未康复。为方便起见,记这两个可能的结果为 0 和 1,下面的定义就是建立在这类试验基础之上的。如果随机变量 X 只取 0 和 1 两个值,并且相应的概率为:

则称随机变量 X 服从参数为 p 的伯努利分布(0-1 分布),若令 q=1-p,则 X 的概率 函数可写:


联系上我们的机器学习中的二分类任务,逻辑回归二分类任务中我们会把正例的 label 设置为 1,负例的 label 设置为 0,对于上面公式就是 x=0,1。


逻辑回归的损失函数推导

       这里我们依然会用到最大似然估计思想,根据若干已知的 X,y(训练集) 找到一组 W 使得 X 作为已知条件下 y 发生的概率最大。 逻辑回归中既然 g(w,x)的输出含义为 P(y=1|w,x),那么 P(y=0|w,x)=1-g(w,x)



只要让我们的 g(w,x)函数在训练集上预测正确的概率最大,g(w,x)就是最好的解。



对于每一条数据预测正确的概率,也可以把下面公式看成是上面式子的合并形式



换符号重写一下



我们假设训练样本相互独立,那么似然函数表达式为:

同样对似然函数取 log,转换为:


        总结,得到了逻辑回归的表达式,下一步跟线性回归类似,构建似然函数,然后最大似然估 计,最终推导出θ的迭代更新表达式。只不过这里用的不是梯度下降,而是梯度上升,因为 这里是最大化似然函数不是最小化似然函数。通常我们一提到损失函数,往往是求最小,这 样我们就可以用梯度下降来求解。最终损失函数就是上面公式加负号的形式:



绘制损失函数

from sklearn.datasets import load_breast_cancer
from sklearn.linear_model import LogisticRegression
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.preprocessing import scale
data = load_breast_cancer()
X, y = scale(data['data'][:, :2]), data['target']
# 求出两个维度对应的数据在逻辑回归算法下的最优解
lr = LogisticRegression(fit_intercept=False)
lr.fit(X, y)
# 分别把两个维度所对应的参数W1和W2取出来
theta1 = lr.coef_[0, 0]
theta2 = lr.coef_[0, 1]
print(theta1, theta2)
# 已知W1和W2的情况下,传进来数据的X,返回数据的y_predict
def p_theta_function(features, w1, w2):
    z = w1*features[0] + w2*features[1]
    return 1 / (1 + np.exp(-z))
# 传入一份已知数据的X,y,如果已知W1和W2的情况下,计算对应这份数据的Loss损失
def loss_function(samples_features, samples_labels, w1, w2):
    result = 0
    # 遍历数据集中的每一条样本,并且计算每条样本的损失,加到result身上得到整体的数据集损失
    for features, label in zip(samples_features, samples_labels):
        # 这是计算一条样本的y_predict
        p_result = p_theta_function(features, w1, w2)
        loss_result = -1*label*np.log(p_result)-(1-label)*np.log(1-p_result)
        result += loss_result
    return result
theta1_space = np.linspace(theta1-0.6, theta1+0.6, 50)
theta2_space = np.linspace(theta2-0.6, theta2+0.6, 50)
result1_ = np.array([loss_function(X, y, i, theta2) for i in theta1_space])
result2_ = np.array([loss_function(X, y, theta1, i) for i in theta2_space])
fig1 = plt.figure(figsize=(8, 6))
plt.subplot(2, 2, 1)
plt.plot(theta1_space, result1_)
plt.subplot(2, 2, 2)
plt.plot(theta2_space, result2_)
plt.subplot(2, 2, 3)
theta1_grid, theta2_grid = np.meshgrid(theta1_space, theta2_space)
loss_grid = loss_function(X, y, theta1_grid, theta2_grid)
plt.contour(theta1_grid, theta2_grid, loss_grid)
plt.subplot(2, 2, 4)
plt.contour(theta1_grid, theta2_grid, loss_grid, 30)
fig2 = plt.figure()
ax = Axes3D(fig2)
ax.plot_surface(theta1_grid, theta2_grid, loss_grid)
plt.show()



逻辑回归如何求解得到最优解模型

对θ求偏导



逻辑回归函数求导



回到对逻辑回归损失函数求导



实战鸢尾花分类

先来实现简单的二分类

import numpy as np
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
# 加载鸢尾花数据集
iris = datasets.load_iris()
# 这里我们以鸢尾花数据的最后一个特征拿来进行预测,也可以都进行去训练模型,但是后面预测的时候也要传入相应的所有特征值
X = iris['data'][:, 3:]
# 因为要做二分类,原始数据是3个种类,所有这里我们将第一二归为一类,第三类归为一类
y = (iris['target'] == 2).astype(np.int)
# 导入逻辑回归模型
multi_classifier = LogisticRegression(solver='sag',max_iter=1000,multi_class='multinomial')
# 训练模型
multi_classifier.fit(X, y)
# 我们创建1000个样本来进行模型预测
X_new = np.linspace(0, 3, 1000).reshape(-1, 1)
# 打印模型预测各个数据的概率
y_proba = multi_classifier.predict_proba(X_new)
print(y_proba)
# 打印模型预测的种类
y_hat = multi_classifier.predict(X_new)
print(y_hat)
[[9.99894620e-01 1.05379741e-04]
 [9.99892853e-01 1.07146756e-04]
 [9.99891057e-01 1.08943398e-04]
 ...
 [5.96947025e-04 9.99403053e-01]
 [5.87107189e-04 9.99412893e-01]
 [5.77429455e-04 9.99422571e-01]]


这是模型预测是哪种类的概率,第一行表示第一条数据,第一列表示预测是第一个种类的概率,第二列表示预测是第二类种类的概率

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1]


这表示的是这1000条数据对应预测出来的种类


逻辑回归如何做多分类

多分类任务

       在上面,我们主要使用逻辑回归解决二分类的问题,那对于多分类的问题,也可以用逻 辑回归来解决? 多分类问题 将邮件分为不同类别/标签:工作(y=1),朋友(y=2),家庭(y=3),爱好(y=4) 天气分类:晴天(y=1),多云天(y=2),下雨天(y=3),下雪天(y=4) 医学图示(Medical diagrams):没生病(y=1),感冒(y=2),流感(y=3)  


 One-vs-all(one-vs-rest),生成三个假的数据集


其思想就是把多分类的任务拆分成多个二分类的任务,进而用逻辑回归进行预测


处理过的数据集就是二分类问题,通过逻辑回归可能得到红线区分不同类别:



同理


使用不同的函数去预测输入 x,分别计算不同 h(x)的值,然后取其中的最大值。哪个 i 对应 的 h(x)越大,就认为属于哪个类



对鸢尾花数据集做多分类

import numpy as np
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
# 加载鸢尾花数据集
iris = datasets.load_iris()
# 这里我们以鸢尾花数据的最后一个特征拿来进行预测,也可以都进行去训练模型,但是后面预测的时候也要传入相应的所有特征值
X = iris['data'][:, 3:]
# 这里我们就直接对原始数据进行多分类预测
y = y = iris['target']
# 导入逻辑回归模型
multi_classifier = LogisticRegression(solver='sag',max_iter=1000,multi_class='multinomial')
# 训练模型
multi_classifier.fit(X, y)
# 我们创建1000个样本来进行模型预测
X_new = np.linspace(0, 3, 1000).reshape(-1, 1)
# 打印模型预测各个数据的概率
y_proba = multi_classifier.predict_proba(X_new)
print(y_proba)
# 打印模型预测的种类
y_hat = multi_classifier.predict(X_new)
print(y_hat)
[[9.67659931e-01 3.23060599e-02 3.40089121e-05]
 [9.67246970e-01 3.27181539e-02 3.48757477e-05]
 [9.66828912e-01 3.31353239e-02 3.57644824e-05]
 ...
 [2.34265543e-07 3.68448418e-03 9.96315282e-01]
 [2.28355838e-07 3.63890382e-03 9.96360868e-01]
 [2.22595088e-07 3.59388530e-03 9.96405892e-01]]


这是模型预测是哪种类的概率,第一行表示第一条数据,第一列表示预测是第一个种类的概率,第二列表示预测是第二类种类的概率,第三列表示预测是第三类的概率

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2]

这表示的是这1000条数据对应预测出来的种类


以上就是逻辑回归的使用


目录
相关文章
|
1月前
|
数据采集 Web App开发 数据可视化
Python零基础爬取东方财富网股票行情数据指南
东方财富网数据稳定、反爬宽松,适合爬虫入门。本文详解使用Python抓取股票行情数据,涵盖请求发送、HTML解析、动态加载处理、代理IP切换及数据可视化,助你快速掌握金融数据爬取技能。
894 1
|
1月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
301 0
|
30天前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
1月前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
2月前
|
存储 监控 API
Python实战:跨平台电商数据聚合系统的技术实现
本文介绍如何通过标准化API调用协议,实现淘宝、京东、拼多多等电商平台的商品数据自动化采集、清洗与存储。内容涵盖技术架构设计、Python代码示例及高阶应用(如价格监控系统),提供可直接落地的技术方案,帮助开发者解决多平台数据同步难题。
|
2月前
|
存储 JSON 算法
Python集合:高效处理无序唯一数据的利器
Python集合是一种高效的数据结构,具备自动去重、快速成员检测和无序性等特点,适用于数据去重、集合运算和性能优化等场景。本文通过实例详解其用法与技巧。
124 0
|
2月前
|
数据采集 关系型数据库 MySQL
python爬取数据存入数据库
Python爬虫结合Scrapy与SQLAlchemy,实现高效数据采集并存入MySQL/PostgreSQL/SQLite。通过ORM映射、连接池优化与批量提交,支持百万级数据高速写入,具备良好的可扩展性与稳定性。
|
2月前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
2月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
2月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。

推荐镜像

更多