PolarDB 开源版通过 postgresql_hll 实现高效率 UV滑动分析、实时推荐已读列表过滤

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力. 本文将介绍PolarDB 开源版通过 postgresql_hll 实现高效率 UV滑动分析、实时推荐已读列表过滤

背景

PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.

本文将介绍PolarDB 开源版通过 postgresql_hll 实现高效率 UV滑动分析、实时推荐已读列表过滤

测试环境为macos+docker, polardb部署请参考:

postgresql_hll 简单介绍

postgresql_hll是高效率存储一堆唯一值的"hash value"的插件:
可以

  • 往这个"hash value"里面追加内容.
  • 有多少唯一值
  • 两个hash value 的差值个数
  • 两个hash value 的union
  • 多个hash value 的union

一个hll可能使用十几KB存储数亿唯一值.

常见场景:

1、

  • UV
  • 滑动窗口UV
  • 新增UV
  • 同比, 环比

2、短视频推荐业务, 只推荐未读的短视频. 使用postgresql_hll可以高效率记录和过滤已读列表.

hll也有点类似bloom filter:

  • 如果判断结果为val在hll里面, 实际val可能不在hll里面. 因为是失真存储, 那么多个val的占位bitmask可能覆盖其他val的bitmask.
  • 如果判断结果为val不在hll里面, 则一定不在.

postgresql_hll for PolarDB

1、安装部署postgresql_hll for polardb

git clone --depth 1 https://github.com/citusdata/postgresql-hll  
  
export PGHOST=localhost  
[postgres@67e1eed1b4b6 ~]$ psql  
psql (11.9)  
Type "help" for help.  
  
postgres=# \q  
  
  
cd postgresql-hll/  
  
USE_PGXS=1 make  
  
USE_PGXS=1 make install  
  
USE_PGXS=1 make installcheck  

2、使用例子

建表, 写入大量UID的行为数据. 生成按天的UV数据, 使用hll存储uid hash.

create table t1 (id int, uid int, info text, crt_time timestamp);  
create table t1_hll (dt date, hllval hll);  
insert into t1 select id, random()*100000, random()::text, now() from generate_series(1,1000000) id;  
insert into t1 select id, random()*100000, random()::text, now()+interval '1 day' from generate_series(1,1000000) id;  
insert into t1_hll select date(crt_time), hll_add_agg(hll_hash_integer(uid)) from t1 group by 1;  

判断UID是否在hll hash内, 检查hll精确性.

postgres=# select t1.uid, t2.hllval=hll_add(t2.hllval, hll_hash_integer(t1.uid)) from t1 , t1_hll t2 where t2.dt=date(now()) and t1.crt_time < date(now())+1 limit 10;  
  uid  | ?column?   
-------+----------  
 95912 | t  
 69657 | t  
 53722 | t  
 95821 | t  
  2836 | t  
 66298 | t  
 68466 | t  
 10122 | t  
 27861 | t  
  6824 | t  
(10 rows)  
  
  
select * from   
  (select t1.uid, t2.hllval=hll_add(t2.hllval, hll_hash_integer(t1.uid)) as yesorno from t1 , t1_hll t2 where t2.dt=date(now()) and t1.crt_time < date(now())+1) t   
where t.yesorno=false;  
  
 uid | yesorno   
-----+---------  
(0 rows)  
  
-- 完全正确.  

划窗分析, 例如直接在hll的统计表中, 统计任意7天的划窗口uv. 如果没有HLL, 划窗分析必须去基表进行统计, 性能极差. 而有了hll, 只需要访问7条记录, 聚合即可.

## What if you wanted to this week's uniques?

SELECT hll_cardinality(hll_union_agg(users)) FROM daily_uniques WHERE date >= '2012-01-02'::date AND date <= '2012-01-08'::date;

## Or the monthly uniques for this year?

SELECT EXTRACT(MONTH FROM date) AS month, hll_cardinality(hll_union_agg(users))
FROM daily_uniques
WHERE date >= '2012-01-01' AND
      date <  '2013-01-01'
GROUP BY 1;

## Or how about a sliding window of uniques over the past 6 days?

SELECT date, #hll_union_agg(users) OVER seven_days
FROM daily_uniques
WINDOW seven_days AS (ORDER BY date ASC ROWS 6 PRECEDING);

## Or the number of uniques you saw yesterday that you didn't see today?

SELECT date, (#hll_union_agg(users) OVER two_days) - #users AS lost_uniques
FROM daily_uniques
WINDOW two_days AS (ORDER BY date ASC ROWS 1 PRECEDING);

参考

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
23天前
|
数据库
|
1月前
|
存储 关系型数据库 分布式数据库
使用开源PolarDB和imgsmlr进行高效的图片存储和相似度搜索
使用开源PolarDB和imgsmlr进行高效的图片存储和相似度搜索
|
1月前
|
SQL JSON 关系型数据库
MySQL是一个广泛使用的开源关系型数据库管理系统,它有许多不同的版本
【10月更文挑战第3天】MySQL是一个广泛使用的开源关系型数据库管理系统,它有许多不同的版本
149 5
|
1月前
|
关系型数据库 分布式数据库 数据库
PolarDB 开源:推动数据库技术新变革
在数字化时代,数据成为核心资产,数据库的性能和可靠性至关重要。阿里云的PolarDB作为新一代云原生数据库,凭借卓越性能和创新技术脱颖而出。其开源不仅让开发者深入了解内部架构,还促进了数据库生态共建,提升了稳定性与可靠性。PolarDB采用云原生架构,支持快速弹性扩展和高并发访问,具备强大的事务处理能力及数据一致性保证,并且与多种应用无缝兼容。开源PolarDB为国内数据库产业注入新活力,打破国外垄断,推动国产数据库崛起,降低企业成本与风险。未来,PolarDB将在生态建设中持续壮大,助力企业数字化转型。
93 2
|
1月前
|
关系型数据库 MySQL 分布式数据库
零基础教你用云数据库PolarDB搭建企业网站,完成就送桌面收纳桶!
零基础教你用云数据库PolarDB搭建企业网站,完成就送桌面收纳桶,邀请好友完成更有机会获得​小米Watch S3、小米体重称​等诸多好礼!
零基础教你用云数据库PolarDB搭建企业网站,完成就送桌面收纳桶!
|
2月前
|
关系型数据库 MySQL Serverless
探索PolarDB MySQL版:Serverless数据库的灵活性与性能
本文介绍了个人开发者对阿里云PolarDB MySQL版,特别是其Serverless特性的详细评测体验。评测涵盖了产品初体验、性能观测、Serverless特性深度评测及成本效益分析等方面。尽管试用过程中遇到一些小问题,但总体而言,PolarDB MySQL版表现出色,提供了高性能、高可用性和灵活的资源管理,是个人开发者和企业用户的优秀选择。
|
3月前
|
关系型数据库 MySQL 分布式数据库
PolarDB 与传统数据库的性能对比分析
【8月更文第27天】随着云计算技术的发展,越来越多的企业开始将数据管理和存储迁移到云端。阿里云的 PolarDB 作为一款兼容 MySQL 和 PostgreSQL 的关系型数据库服务,提供了高性能、高可用和弹性伸缩的能力。本文将从不同角度对比 PolarDB 与本地部署的传统数据库(如 MySQL、PostgreSQL)在性能上的差异。
244 1
|
22天前
|
关系型数据库 分布式数据库 数据库
锦鲤附体 | PolarDB数据库创新设计赛,好礼不停!
锦鲤附体 | PolarDB数据库创新设计赛,好礼不停!
|
2月前
|
关系型数据库 分布式数据库 数据库
2024年全国大学生计算机系统能力大赛PolarDB数据库创新设计赛(天池杯)等你来战!
2024年全国大学生计算机系统能力大赛PolarDB数据库创新设计赛(天池杯)等你来战!
2024年全国大学生计算机系统能力大赛PolarDB数据库创新设计赛(天池杯)等你来战!
|
2月前
|
关系型数据库 分布式数据库 数据库
来!跟通义灵码一起参加PolarDB 数据库创新设计赛,突破传统,探索人机协作
无论你是数据库新手,还是技术大咖,通义灵码邀请你参加2024 年全国大学生计算机系统能力大赛 PolarDB 数据库创新设计赛(天池杯),新参赛模式启动,挑战极限!
111 11

相关产品

  • 云原生数据库 PolarDB
  • 下一篇
    无影云桌面