基于 PaddlePaddle2.x LeNet网络的猫狗分类

简介: 基于 PaddlePaddle2.x LeNet网络的猫狗分类

图像分类是根据图像的语义信息将不同类别图像区分开来,是计算机视觉中重要的基本问题

猫狗分类属于图像分类中的粗粒度分类问题

image.png

# 使用2.0.0以上PaddlePaddle框架
import paddle
print(paddle.__version__)
2.0.1


首先导入必要的包


zipfile------------->python的模块,解压缩zip文件

os------------->python的模块,可使用该模块对操作系统进行操作

paddle--->PaddlePaddle深度学习框架

os------------->python的模块,可使用该模块对操作系统进行操作

numpy---------->python第三方库,用于进行科学计算

PIL------------> Python Image Library,python第三方图像处理库

matplotlib----->python的绘图库 pyplot:matplotlib的绘图框架

os------------->提供了丰富的方法来处理文件和目录

sys------------->供对解释器使用或维护的一些变量的访问,以及与解释器强烈交互的函数。

pickle---------->模块实现了基本的数据序列和反序列化

warnings.filterwarnings("ignore")---------->忽略所有警告

cpu_count---------->获取计算机cpu核数

# 导入需要的包
import warnings
warnings.filterwarnings("ignore")
import tarfile
import paddle
import numpy as np
from PIL import Image
import sys
import pickle
from multiprocessing import cpu_count
import matplotlib.pyplot as plt
import os
from paddle.nn import MaxPool2D,Conv2D,BatchNorm
from paddle.nn import Linear
print("本教程基于Paddle的版本号为:"+paddle.__version__)
本教程基于Paddle的版本号为:2.0.1
'''
参数配置
'''
train_parameters = {
    "input_size": [1, 28, 28],                                #输入图片的shape
    "class_dim": 2,                                          #分类数
    "src_path":"data/data9154/cifar-10-python.tar.gz",        #原始数据集路径
    "target_path":"/home/aistudio/data/",                     #要解压的路径
    "num_epochs": 10,                                         #训练轮数
    "train_batch_size": 100,                                  #训练时每个批次的大小
    "learning_strategy": {                                    #优化函数相关的配置
        "lr": 0.001                                            #超参数学习率
    }, 
    'skip_steps': 5,                                         #每N个批次打印一次结果
    'save_steps': 5,                                         #每N个批次保存一次模型参数
    "checkpoints": "/home/aistudio/checkpoints"          #保存的路径
}


Step1:准备数据


  • (1)解压原始数据集
  • (2)构造dataset、dataloader


数据集介绍


我们使用CIFAR10数据集。CIFAR10数据集包含60,000张32x32的彩色图片,10个类别,每个类包含6,000张。其中50,000张图片作为训练集,10000张作为验证集。这次我们只对其中的猫和狗两类进行预测。

image.png

PaddlePaddle已经内置了若干种常用的数据集,使用CIFAR10特别简单

from paddle.vision.datasets import Cifar1


1.1解压原始数据集


#解压原始数据集函数
def untar_data(src_path,target_path):
    '''
    解压原始数据集,将src_path路径下的tar包解压至target_path目录下
    '''
    if(not os.path.isdir(target_path + "cifar-10-batches-py")):     
        tar = tarfile.open(src_path)
        tar.extractall(path=target_path)
        tar.close()
        print('数据集解压完成')
    else:
        print('文件已存在')
#参数初始化
src_path=train_parameters['src_path']
target_path=train_parameters['target_path']
#解压原始数据到指定路径
untar_data(src_path,target_path)
文件已存在


1.2构造dataset、dataloader


train_dataset和eval_dataset

自定义读取器处理训练集和测试集

paddle.reader.shuffle()表示每次缓存BUF_SIZE个数据项,并进行打乱

paddle.batch()表示每BATCH_SIZE组成一个batch

def unpickle(file):
    # data:a 10000x3072 numpy array of uint8s. Each row of the array stores a 32x32 colour image.
    # The first 1024 entries contain the red channel values, the next 1024 the green,
    # and the final 1024 the blue. The image is stored in row-major order,
    # so that the first 32 entries of the array are the red channel values of the first row of the image.
    # labels:a list of 10000 numbers in the range 0-9.
    # The number at index i indicates the label of the ith image in the array data.
    fo = open(file, 'rb')
    dict = pickle.load(fo,encoding = 'bytes')
    train_labels = dict[b'labels']
    train_array = dict[b'data']
    train_array=train_array.tolist()
    fo.close()
    data_len=len(train_labels)
    for i in range(data_len-1,-1,-1):
        if train_labels[i]==3:
            train_labels[i]=0
        elif train_labels[i]==5:
            train_labels[i]=1
        else:
            train_labels.pop(i)
            train_array.pop(i)            
    train_array=np.array(train_array)
    return train_labels, train_array
import paddle.vision.transforms as T
from paddle.vision.transforms import Compose, Normalize, Resize, Grayscale
from PIL import Image
'''
自定义dataset数据集
'''
from paddle.io import Dataset
class MyDataset(paddle.io.Dataset):
    """
    步骤一:继承paddle.io.Dataset类
    """
    def __init__(self, mode='train'):
        """
        步骤二:实现构造函数,定义数据集大小
        """
        super(MyDataset, self).__init__()
        # 保存标签数据
        self.data = []
        # 保存图像数据
        self.img_datas = []
        # 临时变量
        xs=[]
        ys=[]
        temp_labels=[]
        temp_datas=[]
        # transform定义,转灰度图,缩放到28*28尺寸,归一化
        mean = [127.5]
        std = [127.5]
        self.transforms = Compose([Resize((28,28)),  Grayscale(),  Normalize(mean, std, 'CHW')])
        if mode == 'train':
            #批量读入训练数据
            for i in range(1,6):
                temp_label,temp_data=unpickle(target_path +"cifar-10-batches-py/data_batch_%d" % (i,))
                ys.append(temp_label)
                xs.append(temp_data)
            temp_labels=np.concatenate(ys)
            temp_datas=np.concatenate(xs)
        else:            
            ##批量读入测试数据
            temp_labels,temp_datas=unpickle(target_path +"cifar-10-batches-py/test_batch")
            temp_labels=np.array(temp_labels)
            temp_datas=np.array(temp_datas)
        # 转为3*32*32图像数据
        temp_datas = temp_datas.reshape((-1,3,32,32))
        self.data=temp_labels
        self.img_datas = temp_datas
    def __getitem__(self, index):
        """
        步骤三:实现__getitem__方法,定义指定index时如何获取数据,并返回单条数据(训练数据,对应的标签)
        """
        #返回单一数据和标签
        data_image = self.img_datas[index]
        # 从numpy载入Image
        data_image = Image.fromarray(data_image, 'RGB')
        # 取图像并应用transform进行resize、灰度、normalize
        t_data_image = self.transforms(data_image)
        # 取标签
        label = self.data[index]
        return t_data_image, np.array(label, dtype='int64')
    def __len__(self):
        """
        步骤四:实现__len__方法,返回数据集总数目
        """
        #返回数据总数
        return len(self.data)
# 测试定义的数据集
train_dataset = MyDataset(mode='train')
eval_dataset = MyDataset(mode='val')
print('=============train_dataset =============')
#输出数据集的形状和标签
print('train_dataset.__getitem__(1)[0].shape',train_dataset.__getitem__(1)[0].shape)
print('train_dataset.__getitem__(1)[1]', train_dataset.__getitem__(1)[1])
#输出数据集的长度
print('train_dataset.__len__()',train_dataset.__len__())
print('=============eval_dataset =============')
#输出数据集的长度
print('eval_dataset.__getitem__(1)[0].shape',eval_dataset.__getitem__(1)[0].shape)
print('eval_dataset.__getitem__(1)[1]', eval_dataset.__getitem__(1)[1])
print('eval_dataset.__len__()',eval_dataset.__len__())
=============train_dataset =============
train_dataset.__getitem__(1)[0].shape (1, 28, 28)
train_dataset.__getitem__(1)[1] 0
train_dataset.__len__() 10000
=============eval_dataset =============
eval_dataset.__getitem__(1)[0].shape (1, 28, 28)
eval_dataset.__getitem__(1)[1] 0
eval_dataset.__len__() 2000
#训练数据DataLoad加载
train_loader = paddle.io.DataLoader(train_dataset, 
                                    batch_size=train_parameters['train_batch_size'], 
                                    shuffle=True
                                    )
#测试数据DataLoad加载
eval_loader = paddle.io.DataLoader(eval_dataset,
                                   batch_size=train_parameters['train_batch_size'], 
                                   shuffle=False
                                   )


Step2.网络配置


(1)网络搭建


*** CNN网络模型


在CNN模型中,卷积神经网络能够更好的利用图像的结构信息。下面PaddlePaddle内置的一个较简单的卷积神经网络Lenet。

LeNet-5是卷积神经网络模型的早期代表,它由LeCun在1998年提出。该模型采用顺序结构,主要包括7层(2个卷积层、2个池化层和3个全连接层),卷积层和池化层交替排列。

image.png

import paddle
import paddle.nn as nn
class LeNet(nn.Layer):
# Lenet定义
    def __init__(self, num_classes=10):
        # 分类数,默认10
        super(LeNet, self).__init__()
        self.num_classes = num_classes
        self.features = nn.Sequential(
            nn.Conv2D(
                1, 6, 3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2D(2, 2),
            nn.Conv2D(
                6, 16, 5, stride=1, padding=0),
            nn.ReLU(),
            nn.MaxPool2D(2, 2))
        if num_classes > 0:
            self.fc = nn.Sequential(
                nn.Linear(400, 120),
                nn.Linear(120, 84), nn.Linear(84, num_classes))
    def forward(self, inputs):
        x = self.features(inputs)
        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
            x = self.fc(x)
        return x
# 定义网络
network=LeNet(num_classes=train_parameters['class_dim'])
# 装配模型
model=paddle.Model(network)
# 打印网络结构
model.summary((1, 1, 28 , 28))
---------------------------------------------------------------------------
 Layer (type)       Input Shape          Output Shape         Param #    
===========================================================================
   Conv2D-1       [[1, 1, 28, 28]]      [1, 6, 28, 28]          60       
    ReLU-1        [[1, 6, 28, 28]]      [1, 6, 28, 28]           0       
  MaxPool2D-1     [[1, 6, 28, 28]]      [1, 6, 14, 14]           0       
   Conv2D-2       [[1, 6, 14, 14]]     [1, 16, 10, 10]         2,416     
    ReLU-2       [[1, 16, 10, 10]]     [1, 16, 10, 10]           0       
  MaxPool2D-2    [[1, 16, 10, 10]]      [1, 16, 5, 5]            0       
   Linear-1          [[1, 400]]            [1, 120]           48,120     
   Linear-2          [[1, 120]]            [1, 84]            10,164     
   Linear-3          [[1, 84]]              [1, 2]              170      
===========================================================================
Total params: 60,930
Trainable params: 60,930
Non-trainable params: 0
---------------------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.11
Params size (MB): 0.23
Estimated Total Size (MB): 0.35
---------------------------------------------------------------------------
{'total_params': 60930, 'trainable_params': 60930}


Step3.模型训练 and Step4.模型评估


使用 paddle.optimizer.Adam 优化器来进行优化

使用 F.cross_entropy 来计算损失值

# 绘制损失函数图
def draw_process(title,color,iters,data,label):
    plt.title(title, fontsize=24)
    plt.xlabel("iter", fontsize=20)
    plt.ylabel(label, fontsize=20)
    plt.plot(iters, data,color=color,label=label) 
    plt.legend()
    plt.grid()
    plt.show()
# 模型训练
# 初始化LeNet模型
model=LeNet(num_classes=train_parameters['class_dim'])
# 训练模式
model.train()
# 交叉熵
cross_entropy = paddle.nn.CrossEntropyLoss()
# 优化器
optimizer = paddle.optimizer.Adam(learning_rate=train_parameters['learning_strategy']['lr'],
                                  parameters=model.parameters()) 
# 绘制loss、acc曲线图变量                                  
steps = 0
Iters, total_loss, total_acc = [], [], []
# 开始训练
for epo in range(train_parameters['num_epochs']):
    for _, data in enumerate(train_loader()):
        steps += 1
        x_data = data[0]
        x_data = paddle.to_tensor (x_data)
        y_data = paddle.to_tensor(data[1])
        y_data = paddle.unsqueeze(y_data, 1)
        predicts = model(x_data)
        # 计算交叉熵
        loss = cross_entropy(predicts, y_data)
        # 计算精确度
        acc = paddle.metric.accuracy(predicts, y_data)
        # 反向传播
        loss.backward()
        optimizer.step()
        # 梯度清零
        optimizer.clear_grad()
        if steps % train_parameters["skip_steps"] == 0:
            Iters.append(steps)
            total_loss.append(loss.numpy()[0])
            total_acc.append(acc.numpy()[0])
            #打印中间过程
            print('epo: {}, step: {}, loss is: {}, acc is: {}'\
                  .format(epo, steps, loss.numpy(), acc.numpy()))
        #保存模型参数
        if steps % train_parameters["save_steps"] == 0:
            save_path = train_parameters["checkpoints"]+"/"+"save_dir_" + str(steps) + '.pdparams'
            print('save model to: ' + save_path)
            paddle.save(model.state_dict(),save_path)
paddle.save(model.state_dict(),train_parameters["checkpoints"]+"/"+"save_dir_final.pdparams")
draw_process("trainning loss","red",Iters,total_loss,"trainning loss")
draw_process("trainning acc","green",Iters,total_acc,"trainning acc")
epo: 0, step: 5, loss is: [1.1097064], acc is: [0.49]
save model to: /home/aistudio/checkpoints/save_dir_5.pdparams
epo: 0, step: 10, loss is: [0.8729222], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_10.pdparams
epo: 0, step: 15, loss is: [0.77851003], acc is: [0.49]
save model to: /home/aistudio/checkpoints/save_dir_15.pdparams
epo: 0, step: 20, loss is: [0.68859595], acc is: [0.54]
save model to: /home/aistudio/checkpoints/save_dir_20.pdparams
epo: 0, step: 25, loss is: [0.71485907], acc is: [0.48]
save model to: /home/aistudio/checkpoints/save_dir_25.pdparams
epo: 0, step: 30, loss is: [0.69014424], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_30.pdparams
epo: 0, step: 35, loss is: [0.7331408], acc is: [0.42]
save model to: /home/aistudio/checkpoints/save_dir_35.pdparams
epo: 0, step: 40, loss is: [0.6923569], acc is: [0.53]
save model to: /home/aistudio/checkpoints/save_dir_40.pdparams
epo: 0, step: 45, loss is: [0.70091367], acc is: [0.49]
save model to: /home/aistudio/checkpoints/save_dir_45.pdparams
epo: 0, step: 50, loss is: [0.69078857], acc is: [0.52]
save model to: /home/aistudio/checkpoints/save_dir_50.pdparams
epo: 0, step: 55, loss is: [0.69088614], acc is: [0.52]
save model to: /home/aistudio/checkpoints/save_dir_55.pdparams
epo: 0, step: 60, loss is: [0.7027031], acc is: [0.46]
save model to: /home/aistudio/checkpoints/save_dir_60.pdparams
epo: 0, step: 65, loss is: [0.6824346], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_65.pdparams
epo: 0, step: 70, loss is: [0.6795273], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_70.pdparams
epo: 0, step: 75, loss is: [0.6809163], acc is: [0.59]
save model to: /home/aistudio/checkpoints/save_dir_75.pdparams
epo: 0, step: 80, loss is: [0.7107715], acc is: [0.43]
save model to: /home/aistudio/checkpoints/save_dir_80.pdparams
epo: 0, step: 85, loss is: [0.70901597], acc is: [0.53]
save model to: /home/aistudio/checkpoints/save_dir_85.pdparams
epo: 0, step: 90, loss is: [0.7054188], acc is: [0.44]
save model to: /home/aistudio/checkpoints/save_dir_90.pdparams
epo: 0, step: 95, loss is: [0.6982265], acc is: [0.54]
save model to: /home/aistudio/checkpoints/save_dir_95.pdparams
epo: 0, step: 100, loss is: [0.6998703], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_100.pdparams
epo: 1, step: 105, loss is: [0.70260566], acc is: [0.44]
save model to: /home/aistudio/checkpoints/save_dir_105.pdparams
epo: 1, step: 110, loss is: [0.67828727], acc is: [0.56]
save model to: /home/aistudio/checkpoints/save_dir_110.pdparams
epo: 1, step: 115, loss is: [0.68608195], acc is: [0.49]
save model to: /home/aistudio/checkpoints/save_dir_115.pdparams
epo: 1, step: 120, loss is: [0.697596], acc is: [0.59]
save model to: /home/aistudio/checkpoints/save_dir_120.pdparams
epo: 1, step: 125, loss is: [0.7016902], acc is: [0.5]
save model to: /home/aistudio/checkpoints/save_dir_125.pdparams
epo: 1, step: 130, loss is: [0.6790494], acc is: [0.56]
save model to: /home/aistudio/checkpoints/save_dir_130.pdparams
epo: 1, step: 135, loss is: [0.68013227], acc is: [0.57]
save model to: /home/aistudio/checkpoints/save_dir_135.pdparams
epo: 1, step: 140, loss is: [0.70905924], acc is: [0.45]
save model to: /home/aistudio/checkpoints/save_dir_140.pdparams
epo: 1, step: 145, loss is: [0.6931264], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_145.pdparams
epo: 1, step: 150, loss is: [0.6971727], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_150.pdparams
epo: 1, step: 155, loss is: [0.67896414], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_155.pdparams
epo: 1, step: 160, loss is: [0.67097855], acc is: [0.56]
save model to: /home/aistudio/checkpoints/save_dir_160.pdparams
epo: 1, step: 165, loss is: [0.69235575], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_165.pdparams
epo: 1, step: 170, loss is: [0.6894104], acc is: [0.54]
save model to: /home/aistudio/checkpoints/save_dir_170.pdparams
epo: 1, step: 175, loss is: [0.70366347], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_175.pdparams
epo: 1, step: 180, loss is: [0.69162464], acc is: [0.48]
save model to: /home/aistudio/checkpoints/save_dir_180.pdparams
epo: 1, step: 185, loss is: [0.67835146], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_185.pdparams
epo: 1, step: 190, loss is: [0.6919897], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_190.pdparams
epo: 1, step: 195, loss is: [0.69632596], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_195.pdparams
epo: 1, step: 200, loss is: [0.70401454], acc is: [0.41]
save model to: /home/aistudio/checkpoints/save_dir_200.pdparams
epo: 2, step: 205, loss is: [0.72231257], acc is: [0.47]
save model to: /home/aistudio/checkpoints/save_dir_205.pdparams
epo: 2, step: 210, loss is: [0.6722144], acc is: [0.65]
save model to: /home/aistudio/checkpoints/save_dir_210.pdparams
epo: 2, step: 215, loss is: [0.7005479], acc is: [0.43]
save model to: /home/aistudio/checkpoints/save_dir_215.pdparams
epo: 2, step: 220, loss is: [0.68955404], acc is: [0.54]
save model to: /home/aistudio/checkpoints/save_dir_220.pdparams
epo: 2, step: 225, loss is: [0.68503153], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_225.pdparams
epo: 2, step: 230, loss is: [0.6742158], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_230.pdparams
epo: 2, step: 235, loss is: [0.68807405], acc is: [0.53]
save model to: /home/aistudio/checkpoints/save_dir_235.pdparams
epo: 2, step: 240, loss is: [0.7038729], acc is: [0.53]
save model to: /home/aistudio/checkpoints/save_dir_240.pdparams
epo: 2, step: 245, loss is: [0.69256955], acc is: [0.49]
save model to: /home/aistudio/checkpoints/save_dir_245.pdparams
epo: 2, step: 250, loss is: [0.6998977], acc is: [0.53]
save model to: /home/aistudio/checkpoints/save_dir_250.pdparams
epo: 2, step: 255, loss is: [0.6635308], acc is: [0.64]
save model to: /home/aistudio/checkpoints/save_dir_255.pdparams
epo: 2, step: 260, loss is: [0.6831071], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_260.pdparams
epo: 2, step: 265, loss is: [0.6725425], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_265.pdparams
epo: 2, step: 270, loss is: [0.6881926], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_270.pdparams
epo: 2, step: 275, loss is: [0.69550765], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_275.pdparams
epo: 2, step: 280, loss is: [0.68708885], acc is: [0.53]
save model to: /home/aistudio/checkpoints/save_dir_280.pdparams
epo: 2, step: 285, loss is: [0.68473077], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_285.pdparams
epo: 2, step: 290, loss is: [0.6903842], acc is: [0.52]
save model to: /home/aistudio/checkpoints/save_dir_290.pdparams
epo: 2, step: 295, loss is: [0.7028897], acc is: [0.48]
save model to: /home/aistudio/checkpoints/save_dir_295.pdparams
epo: 2, step: 300, loss is: [0.6931243], acc is: [0.52]
save model to: /home/aistudio/checkpoints/save_dir_300.pdparams
epo: 3, step: 305, loss is: [0.68098104], acc is: [0.57]
save model to: /home/aistudio/checkpoints/save_dir_305.pdparams
epo: 3, step: 310, loss is: [0.6757507], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_310.pdparams
epo: 3, step: 315, loss is: [0.7027341], acc is: [0.44]
save model to: /home/aistudio/checkpoints/save_dir_315.pdparams
epo: 3, step: 320, loss is: [0.7009732], acc is: [0.49]
save model to: /home/aistudio/checkpoints/save_dir_320.pdparams
epo: 3, step: 325, loss is: [0.7078163], acc is: [0.47]
save model to: /home/aistudio/checkpoints/save_dir_325.pdparams
epo: 3, step: 330, loss is: [0.6958405], acc is: [0.44]
save model to: /home/aistudio/checkpoints/save_dir_330.pdparams
epo: 3, step: 335, loss is: [0.69992703], acc is: [0.53]
save model to: /home/aistudio/checkpoints/save_dir_335.pdparams
epo: 3, step: 340, loss is: [0.69363695], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_340.pdparams
epo: 3, step: 345, loss is: [0.6923307], acc is: [0.56]
save model to: /home/aistudio/checkpoints/save_dir_345.pdparams
epo: 3, step: 350, loss is: [0.6739081], acc is: [0.6]
save model to: /home/aistudio/checkpoints/save_dir_350.pdparams
epo: 3, step: 355, loss is: [0.68306243], acc is: [0.53]
save model to: /home/aistudio/checkpoints/save_dir_355.pdparams
epo: 3, step: 360, loss is: [0.66385293], acc is: [0.64]
save model to: /home/aistudio/checkpoints/save_dir_360.pdparams
epo: 3, step: 365, loss is: [0.6816753], acc is: [0.56]
save model to: /home/aistudio/checkpoints/save_dir_365.pdparams
epo: 3, step: 370, loss is: [0.6921282], acc is: [0.54]
save model to: /home/aistudio/checkpoints/save_dir_370.pdparams
epo: 3, step: 375, loss is: [0.6865966], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_375.pdparams
epo: 3, step: 380, loss is: [0.69338584], acc is: [0.49]
save model to: /home/aistudio/checkpoints/save_dir_380.pdparams
epo: 3, step: 385, loss is: [0.6800542], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_385.pdparams
epo: 3, step: 390, loss is: [0.6839569], acc is: [0.52]
save model to: /home/aistudio/checkpoints/save_dir_390.pdparams
epo: 3, step: 395, loss is: [0.6774286], acc is: [0.57]
save model to: /home/aistudio/checkpoints/save_dir_395.pdparams
epo: 3, step: 400, loss is: [0.7004008], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_400.pdparams
epo: 4, step: 405, loss is: [0.7059412], acc is: [0.44]
save model to: /home/aistudio/checkpoints/save_dir_405.pdparams
epo: 4, step: 410, loss is: [0.69455093], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_410.pdparams
epo: 4, step: 415, loss is: [0.6933525], acc is: [0.53]
save model to: /home/aistudio/checkpoints/save_dir_415.pdparams
epo: 4, step: 420, loss is: [0.7079694], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_420.pdparams
epo: 4, step: 425, loss is: [0.6937676], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_425.pdparams
epo: 4, step: 430, loss is: [0.68947273], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_430.pdparams
epo: 4, step: 435, loss is: [0.6781409], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_435.pdparams
epo: 4, step: 440, loss is: [0.6878584], acc is: [0.56]
save model to: /home/aistudio/checkpoints/save_dir_440.pdparams
epo: 4, step: 445, loss is: [0.66629666], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_445.pdparams
epo: 4, step: 450, loss is: [0.66666824], acc is: [0.62]
save model to: /home/aistudio/checkpoints/save_dir_450.pdparams
epo: 4, step: 455, loss is: [0.67528206], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_455.pdparams
epo: 4, step: 460, loss is: [0.7015488], acc is: [0.47]
save model to: /home/aistudio/checkpoints/save_dir_460.pdparams
epo: 4, step: 465, loss is: [0.6915476], acc is: [0.61]
save model to: /home/aistudio/checkpoints/save_dir_465.pdparams
epo: 4, step: 470, loss is: [0.6868398], acc is: [0.57]
save model to: /home/aistudio/checkpoints/save_dir_470.pdparams
epo: 4, step: 475, loss is: [0.69640535], acc is: [0.52]
save model to: /home/aistudio/checkpoints/save_dir_475.pdparams
epo: 4, step: 480, loss is: [0.6844581], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_480.pdparams
epo: 4, step: 485, loss is: [0.678205], acc is: [0.61]
save model to: /home/aistudio/checkpoints/save_dir_485.pdparams
epo: 4, step: 490, loss is: [0.6782288], acc is: [0.57]
save model to: /home/aistudio/checkpoints/save_dir_490.pdparams
epo: 4, step: 495, loss is: [0.6809789], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_495.pdparams
epo: 4, step: 500, loss is: [0.6791268], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_500.pdparams
epo: 5, step: 505, loss is: [0.66857773], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_505.pdparams
epo: 5, step: 510, loss is: [0.68727225], acc is: [0.54]
save model to: /home/aistudio/checkpoints/save_dir_510.pdparams
epo: 5, step: 515, loss is: [0.68932843], acc is: [0.49]
save model to: /home/aistudio/checkpoints/save_dir_515.pdparams
epo: 5, step: 520, loss is: [0.68978363], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_520.pdparams
epo: 5, step: 525, loss is: [0.69064134], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_525.pdparams
epo: 5, step: 530, loss is: [0.682237], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_530.pdparams
epo: 5, step: 535, loss is: [0.68976945], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_535.pdparams
epo: 5, step: 540, loss is: [0.67902535], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_540.pdparams
epo: 5, step: 545, loss is: [0.67134506], acc is: [0.65]
save model to: /home/aistudio/checkpoints/save_dir_545.pdparams
epo: 5, step: 550, loss is: [0.6688429], acc is: [0.61]
save model to: /home/aistudio/checkpoints/save_dir_550.pdparams
epo: 5, step: 555, loss is: [0.7254223], acc is: [0.49]
save model to: /home/aistudio/checkpoints/save_dir_555.pdparams
epo: 5, step: 560, loss is: [0.69241136], acc is: [0.54]
save model to: /home/aistudio/checkpoints/save_dir_560.pdparams
epo: 5, step: 565, loss is: [0.6801878], acc is: [0.56]
save model to: /home/aistudio/checkpoints/save_dir_565.pdparams
epo: 5, step: 570, loss is: [0.6906636], acc is: [0.53]
save model to: /home/aistudio/checkpoints/save_dir_570.pdparams
epo: 5, step: 575, loss is: [0.70213795], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_575.pdparams
epo: 5, step: 580, loss is: [0.69319504], acc is: [0.52]
save model to: /home/aistudio/checkpoints/save_dir_580.pdparams
epo: 5, step: 585, loss is: [0.7011637], acc is: [0.48]
save model to: /home/aistudio/checkpoints/save_dir_585.pdparams
epo: 5, step: 590, loss is: [0.6848818], acc is: [0.59]
save model to: /home/aistudio/checkpoints/save_dir_590.pdparams
epo: 5, step: 595, loss is: [0.67795885], acc is: [0.6]
save model to: /home/aistudio/checkpoints/save_dir_595.pdparams
epo: 5, step: 600, loss is: [0.6833943], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_600.pdparams
epo: 6, step: 605, loss is: [0.6795752], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_605.pdparams
epo: 6, step: 610, loss is: [0.6964473], acc is: [0.5]
save model to: /home/aistudio/checkpoints/save_dir_610.pdparams
epo: 6, step: 615, loss is: [0.7281563], acc is: [0.43]
save model to: /home/aistudio/checkpoints/save_dir_615.pdparams
epo: 6, step: 620, loss is: [0.675564], acc is: [0.6]
save model to: /home/aistudio/checkpoints/save_dir_620.pdparams
epo: 6, step: 625, loss is: [0.6895311], acc is: [0.52]
save model to: /home/aistudio/checkpoints/save_dir_625.pdparams
epo: 6, step: 630, loss is: [0.67448664], acc is: [0.64]
save model to: /home/aistudio/checkpoints/save_dir_630.pdparams
epo: 6, step: 635, loss is: [0.6737503], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_635.pdparams
epo: 6, step: 640, loss is: [0.70881164], acc is: [0.46]
save model to: /home/aistudio/checkpoints/save_dir_640.pdparams
epo: 6, step: 645, loss is: [0.68261325], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_645.pdparams
epo: 6, step: 650, loss is: [0.6765045], acc is: [0.57]
save model to: /home/aistudio/checkpoints/save_dir_650.pdparams
epo: 6, step: 655, loss is: [0.6759614], acc is: [0.59]
save model to: /home/aistudio/checkpoints/save_dir_655.pdparams
epo: 6, step: 660, loss is: [0.6793112], acc is: [0.57]
save model to: /home/aistudio/checkpoints/save_dir_660.pdparams
epo: 6, step: 665, loss is: [0.6845392], acc is: [0.53]
save model to: /home/aistudio/checkpoints/save_dir_665.pdparams
epo: 6, step: 670, loss is: [0.6814833], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_670.pdparams
epo: 6, step: 675, loss is: [0.68463284], acc is: [0.54]
save model to: /home/aistudio/checkpoints/save_dir_675.pdparams
epo: 6, step: 680, loss is: [0.6939957], acc is: [0.54]
save model to: /home/aistudio/checkpoints/save_dir_680.pdparams
epo: 6, step: 685, loss is: [0.6949662], acc is: [0.56]
save model to: /home/aistudio/checkpoints/save_dir_685.pdparams
epo: 6, step: 690, loss is: [0.6850964], acc is: [0.54]
save model to: /home/aistudio/checkpoints/save_dir_690.pdparams
epo: 6, step: 695, loss is: [0.6783737], acc is: [0.6]
save model to: /home/aistudio/checkpoints/save_dir_695.pdparams
epo: 6, step: 700, loss is: [0.6847418], acc is: [0.56]
save model to: /home/aistudio/checkpoints/save_dir_700.pdparams
epo: 7, step: 705, loss is: [0.6696134], acc is: [0.6]
save model to: /home/aistudio/checkpoints/save_dir_705.pdparams
epo: 7, step: 710, loss is: [0.699369], acc is: [0.59]
save model to: /home/aistudio/checkpoints/save_dir_710.pdparams
epo: 7, step: 715, loss is: [0.6834408], acc is: [0.61]
save model to: /home/aistudio/checkpoints/save_dir_715.pdparams
epo: 7, step: 720, loss is: [0.6834759], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_720.pdparams
epo: 7, step: 725, loss is: [0.68610823], acc is: [0.54]
save model to: /home/aistudio/checkpoints/save_dir_725.pdparams
epo: 7, step: 730, loss is: [0.667547], acc is: [0.6]
save model to: /home/aistudio/checkpoints/save_dir_730.pdparams
epo: 7, step: 735, loss is: [0.70002645], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_735.pdparams
epo: 7, step: 740, loss is: [0.6882743], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_740.pdparams
epo: 7, step: 745, loss is: [0.6829937], acc is: [0.53]
save model to: /home/aistudio/checkpoints/save_dir_745.pdparams
epo: 7, step: 750, loss is: [0.6799063], acc is: [0.57]
save model to: /home/aistudio/checkpoints/save_dir_750.pdparams
epo: 7, step: 755, loss is: [0.6759838], acc is: [0.59]
save model to: /home/aistudio/checkpoints/save_dir_755.pdparams
epo: 7, step: 760, loss is: [0.7013712], acc is: [0.47]
save model to: /home/aistudio/checkpoints/save_dir_760.pdparams
epo: 7, step: 765, loss is: [0.67678285], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_765.pdparams
epo: 7, step: 770, loss is: [0.6903254], acc is: [0.52]
save model to: /home/aistudio/checkpoints/save_dir_770.pdparams
epo: 7, step: 775, loss is: [0.71212935], acc is: [0.45]
save model to: /home/aistudio/checkpoints/save_dir_775.pdparams
epo: 7, step: 780, loss is: [0.66622734], acc is: [0.62]
save model to: /home/aistudio/checkpoints/save_dir_780.pdparams
epo: 7, step: 785, loss is: [0.6900478], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_785.pdparams
epo: 7, step: 790, loss is: [0.6736644], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_790.pdparams
epo: 7, step: 795, loss is: [0.70363], acc is: [0.52]
save model to: /home/aistudio/checkpoints/save_dir_795.pdparams
epo: 7, step: 800, loss is: [0.6934418], acc is: [0.49]
save model to: /home/aistudio/checkpoints/save_dir_800.pdparams
epo: 8, step: 805, loss is: [0.6693335], acc is: [0.59]
save model to: /home/aistudio/checkpoints/save_dir_805.pdparams
epo: 8, step: 810, loss is: [0.694484], acc is: [0.52]
save model to: /home/aistudio/checkpoints/save_dir_810.pdparams
epo: 8, step: 815, loss is: [0.7255772], acc is: [0.37]
save model to: /home/aistudio/checkpoints/save_dir_815.pdparams
epo: 8, step: 820, loss is: [0.6915439], acc is: [0.56]
save model to: /home/aistudio/checkpoints/save_dir_820.pdparams
epo: 8, step: 825, loss is: [0.6881697], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_825.pdparams
epo: 8, step: 830, loss is: [0.68885416], acc is: [0.52]
save model to: /home/aistudio/checkpoints/save_dir_830.pdparams
epo: 8, step: 835, loss is: [0.6819633], acc is: [0.52]
save model to: /home/aistudio/checkpoints/save_dir_835.pdparams
epo: 8, step: 840, loss is: [0.68416965], acc is: [0.54]
save model to: /home/aistudio/checkpoints/save_dir_840.pdparams
epo: 8, step: 845, loss is: [0.6801962], acc is: [0.5]
save model to: /home/aistudio/checkpoints/save_dir_845.pdparams
epo: 8, step: 850, loss is: [0.67312473], acc is: [0.62]
save model to: /home/aistudio/checkpoints/save_dir_850.pdparams
epo: 8, step: 855, loss is: [0.6651606], acc is: [0.64]
save model to: /home/aistudio/checkpoints/save_dir_855.pdparams
epo: 8, step: 860, loss is: [0.66604716], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_860.pdparams
epo: 8, step: 865, loss is: [0.6775603], acc is: [0.61]
save model to: /home/aistudio/checkpoints/save_dir_865.pdparams
epo: 8, step: 870, loss is: [0.6985699], acc is: [0.5]
save model to: /home/aistudio/checkpoints/save_dir_870.pdparams
epo: 8, step: 875, loss is: [0.6906618], acc is: [0.54]
save model to: /home/aistudio/checkpoints/save_dir_875.pdparams
epo: 8, step: 880, loss is: [0.6838692], acc is: [0.56]
save model to: /home/aistudio/checkpoints/save_dir_880.pdparams
epo: 8, step: 885, loss is: [0.6818925], acc is: [0.63]
save model to: /home/aistudio/checkpoints/save_dir_885.pdparams
epo: 8, step: 890, loss is: [0.7003258], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_890.pdparams
epo: 8, step: 895, loss is: [0.7080064], acc is: [0.5]
save model to: /home/aistudio/checkpoints/save_dir_895.pdparams
epo: 8, step: 900, loss is: [0.67341954], acc is: [0.61]
save model to: /home/aistudio/checkpoints/save_dir_900.pdparams
epo: 9, step: 905, loss is: [0.68930835], acc is: [0.53]
save model to: /home/aistudio/checkpoints/save_dir_905.pdparams
epo: 9, step: 910, loss is: [0.7058289], acc is: [0.46]
save model to: /home/aistudio/checkpoints/save_dir_910.pdparams
epo: 9, step: 915, loss is: [0.67915636], acc is: [0.6]
save model to: /home/aistudio/checkpoints/save_dir_915.pdparams
epo: 9, step: 920, loss is: [0.687831], acc is: [0.58]
save model to: /home/aistudio/checkpoints/save_dir_920.pdparams
epo: 9, step: 925, loss is: [0.6957987], acc is: [0.46]
save model to: /home/aistudio/checkpoints/save_dir_925.pdparams
epo: 9, step: 930, loss is: [0.6923476], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_930.pdparams
epo: 9, step: 935, loss is: [0.70298016], acc is: [0.47]
save model to: /home/aistudio/checkpoints/save_dir_935.pdparams
epo: 9, step: 940, loss is: [0.69297534], acc is: [0.54]
save model to: /home/aistudio/checkpoints/save_dir_940.pdparams
epo: 9, step: 945, loss is: [0.6787053], acc is: [0.56]
save model to: /home/aistudio/checkpoints/save_dir_945.pdparams
epo: 9, step: 950, loss is: [0.6894692], acc is: [0.57]
save model to: /home/aistudio/checkpoints/save_dir_950.pdparams
epo: 9, step: 955, loss is: [0.70166737], acc is: [0.51]
save model to: /home/aistudio/checkpoints/save_dir_955.pdparams
epo: 9, step: 960, loss is: [0.69754714], acc is: [0.53]
save model to: /home/aistudio/checkpoints/save_dir_960.pdparams
epo: 9, step: 965, loss is: [0.6867398], acc is: [0.54]
save model to: /home/aistudio/checkpoints/save_dir_965.pdparams
epo: 9, step: 970, loss is: [0.6726653], acc is: [0.59]
save model to: /home/aistudio/checkpoints/save_dir_970.pdparams
epo: 9, step: 975, loss is: [0.6738178], acc is: [0.56]
save model to: /home/aistudio/checkpoints/save_dir_975.pdparams
epo: 9, step: 980, loss is: [0.6699579], acc is: [0.55]
save model to: /home/aistudio/checkpoints/save_dir_980.pdparams
epo: 9, step: 985, loss is: [0.6805726], acc is: [0.57]
save model to: /home/aistudio/checkpoints/save_dir_985.pdparams
epo: 9, step: 990, loss is: [0.68973434], acc is: [0.53]
save model to: /home/aistudio/checkpoints/save_dir_990.pdparams
epo: 9, step: 995, loss is: [0.66840816], acc is: [0.6]
save model to: /home/aistudio/checkpoints/save_dir_995.pdparams
epo: 9, step: 1000, loss is: [0.7072126], acc is: [0.49]
save model to: /home/aistudio/checkpoints/save_dir_1000.pdparams

image.png


模型验证


训练完成后,需要验证模型的效果,此时,加载测试数据集,然后用训练好的模对测试集进行预测,计算损失与精度。

'''
模型评估
'''
model__state_dict = paddle.load(train_parameters["checkpoints"]+"/"+"save_dir_final.pdparams")
model_eval =  LeNet( num_classes=train_parameters['class_dim'])
model_eval.set_state_dict(model__state_dict) 
model_eval.eval()
accs = []
for _, data in enumerate(eval_loader()):
    x_data = data[0]
    y_data = paddle.to_tensor(data[1])
    y_data = paddle.unsqueeze(y_data, 1)
    predicts = model_eval(x_data)
    # 计算acc
    acc = paddle.metric.accuracy(predicts, y_data)
    accs.append(acc.numpy()[0])
print('模型在验证集上的准确率为:',np.mean(accs))
模型在验证集上的准确率为: 0.5365


Step5.模型预测


# 图片预处理
def load_image(file):
        '''
        预测图片预处理
        '''
        #打开图片
        im = Image.open(file)
        #将图片调整为跟训练数据一样的大小  28*28,设定ANTIALIAS,即抗锯齿.resize是缩放
        im = im.resize((28, 28), Image.ANTIALIAS)
        # 转灰度图
        im = im.convert('1')
        #建立图片矩阵 类型为float32
        im = np.array(im).astype(np.float32)
        #矩阵转置                           
        #将像素值从【0-255】转换为【0-1】
        im = im / 255.0
        #print(im)       
        im = np.expand_dims(im, axis=0)
        # 保持和之前输入image维度一致
        print('im_shape的维度:',im.shape)
        return im
'''
模型预测
'''
# 载入模型
model__state_dict = paddle.load(train_parameters["checkpoints"]+"/"+"save_dir_final.pdparams")
model_eval = LeNet( num_classes=train_parameters['class_dim'])
model_eval.set_state_dict(model__state_dict) 
#训练模式
model.eval() 
#展示预测图片
infer_path='/home/aistudio/data/data7940/dog.png'
img = Image.open(infer_path)
plt.imshow(img)          #根据数组绘制图像
plt.show()               #显示图像
#对预测图片进行预处理
infer_img = load_image(infer_path)
infer_img = infer_img.reshape(1,28,28)
# infer_img = infer_img.toGra
#定义标签列表
label_list = [ "cat",  "dog"]
data = infer_img
dy_x_data = np.array(data).astype('float32')
dy_x_data=dy_x_data[np.newaxis,:, : ,:]
img = paddle.to_tensor(dy_x_data)
out = model(img)
lab = np.argmax(out.numpy())  #argmax():返回最大数的索引
print(label_list[lab])

image.png

im_shape的维度: (1, 28, 28)
dog


目录
相关文章
|
2月前
|
网络协议
计算机网络的分类
【10月更文挑战第11天】 计算机网络可按覆盖范围(局域网、城域网、广域网)、传输技术(有线、无线)、拓扑结构(星型、总线型、环型、网状型)、使用者(公用、专用)、交换方式(电路交换、分组交换)和服务类型(面向连接、无连接)等多种方式进行分类,每种分类方式揭示了网络的不同特性和应用场景。
|
16天前
|
机器学习/深度学习 Serverless 索引
分类网络中one-hot编码的作用
在分类任务中,使用神经网络时,通常需要将类别标签转换为一种合适的输入格式。这时候,one-hot编码(one-hot encoding)是一种常见且有效的方法。one-hot编码将类别标签表示为向量形式,其中只有一个元素为1,其他元素为0。
21 2
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
56 3
|
2月前
|
机器学习/深度学习 Serverless 索引
分类网络中one-hot的作用
在分类任务中,使用神经网络时,通常需要将类别标签转换为一种合适的输入格式。这时候,one-hot编码(one-hot encoding)是一种常见且有效的方法。one-hot编码将类别标签表示为向量形式,其中只有一个元素为1,其他元素为0。
66 3
|
3月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
105 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
2月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
62 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习入门案例:运用神经网络实现价格分类
深度学习入门案例:运用神经网络实现价格分类
|
2月前
|
存储 分布式计算 负载均衡
|
2月前
|
安全 区块链 数据库
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。