Python计算基尼系数实践笔记(案例+代码+视频+列表推导式)

简介: Python计算基尼系数实践笔记(案例+代码+视频+列表推导式)

前些天听了南京大学周耿老师关于“基尼系数计算”的直播课,需要时间好好消化,便有了整理此篇文章的想法。


1 基尼系数


1.1 简介

1912年意大利经济学家基尼,设计了一个测度社会贫富差距的方法沿用至今,成为国际通用的标准。


基尼系数最大为“1”,最小等于“0”。基尼系数越接近0表明收入分配越是趋向平等。国际上并没有一个组织或教科书给出最适合的基尼系数标准。但有不少人认为基尼系数小于0.2时,居民收入过于平均,0.2-0.3之间时较为平均,0.3-0.4之间时比较合理,0.4-0.5时差距过大,大于0.5时差距悬殊。

image.png

世界部分国家基尼系数排行1970-2019


1.2 定义

基尼系数有好几种定义方式,老师在课上公式法中运用的是下面第二张图中的公式,还有其他的一些公式,感兴趣的也可以自己通过代码实现,用来对比不同算法之间的差异。

20210709215659463.png


2 实践


2.1 公式法

image.png

代码如下:

def gini(L):
    s1=0  #分子
    s2=0  #分母
    for i in L:
        s2+=2*len(L)*i
        for j in L:
            s1+=abs(i-j)
    return s1/s2
gini(r)   # 这里的r是老师通过random模块paretovar()方法构造的帕累托分布,大家也可以自己生成数据测试代码效果


我们同样用美国2008年收入数据来检验下公式法。


代码如下:

#生成列表,带入函数计算
df=pd.read_csv('usa_income.csv')
L=[]
for i in df.index:
    L=L+[ df.loc[i,'income'] for j in range(int(df.loc[i,'people']/10000))] #列表推导式
gini(L)
# out:0.5979213459691597


2.2 估算美国2008年基尼系数

2.2.1 读取数据并计算

代码如下:

#读取数据
df=pd.read_csv('usa_income.csv')
df['all_income']=df['people']*df['income']
df['people_cum']=df['people'].cumsum()
df['people_ratio']=df['people']/df['people'].sum()*100
df['people_ratio_cum']=df['people_cum']/df['people_cum'].max()*100
df['all_income_cum']=df['all_income'].cumsum()
df['Lorenz curve']=df['all_income_cum']/df['all_income_cum'].max()*100 #洛伦茨曲线
df


效果如图:

20210709215749193.png


2.2.2 画洛伦兹曲线

代码如下:

df['avg']=df['people_ratio_cum']  #绝对平均线
df.plot(x='people_ratio_cum', y=['Lorenz curve','avg']) #画图


效果如图:

image.png


2.2.3 按图形面积计算

#面积A+B=100*100*0.5=5000
#面积B
s=0
for i in df.index[1:]:
    people1=df.loc[i-1,'Lorenz curve'] #梯形的下底
    people2=df.loc[i,'Lorenz curve'] #梯形的上底
    people_ratio=df.loc[i,'people_ratio']
    s+=(people1+people2)*people_ratio*0.5
Gini=round((100*100*0.5-s)/(100*100*0.5),8) # 三角形的面积好求,洛伦兹曲线计算需要思考
Gini    # 计算结果为:0.60257495


不难发现,公式法与面积法计算结果还是比较接近的。


3 列表推导式与条件赋值


学习pandas,列表推导式最好一并掌握。


在生成一个数字序列的时候,在 Python 中可以如下写出:

L = []
def my_func(x):
    return 2*x
for i in range(5):
   L.append(my_func(i))
L
# Out: [0, 2, 4, 6, 8]


事实上可以利用列表推导式进行写法上的简化: [* for i in *] 。其中,第一个 * 为映射函数,其输入为后面 i 指代的内容,第二个 * 表示迭代的对象。

[my_func(i) for i in range(5)]
# Out:[0, 2, 4, 6, 8]


列表表达式还支持多层嵌套,如下面的例子中第一个 for 为外层循环,第二个为内层循环:

[m+'_'+n for m in ['a', 'b'] for n in ['c', 'd']]
# out:['a_c', 'a_d', 'b_c', 'b_d']


除了列表推导式,另一个实用的语法糖是带有 if 选择的条件赋值,其形式为 value = a if condition else b :

value = 'cat' if 2>1 else 'dog'
value
# out: 'cat'


等价于如下的写法:

a, b = 'cat', 'dog'
condition = 2 > 1 # 此时为True
if condition:
    value = a
else:
    value = b


下面举一个例子,截断列表中超过5的元素,即超过5的用5代替,小于5的保留原来的值:

L = [1, 2, 3, 4, 5, 6, 7]
[i if i <= 5 else 5 for i in L]
# out:[1, 2, 3, 4, 5, 5, 5]


References

基尼系数_百度百科 (baidu.com)

How Has the Literature on Gini’s IndexEvolved in the Past 80 Years?

目录
相关文章
|
4天前
|
数据采集 JSON 数据格式
深入解析:使用Python爬取Bilibili视频
本文介绍了如何使用Python编写脚本自动化下载Bilibili视频。通过requests等库获取视频和音频URL,使用ffmpeg合并音视频文件,最终实现高效下载。注意遵守网站爬虫政策和法律法规。
50 4
|
9天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
9天前
|
Python
探索Python中的列表推导式
【10月更文挑战第38天】本文深入探讨了Python中强大而简洁的编程工具——列表推导式。从基础使用到高级技巧,我们将一步步揭示如何利用这个特性来简化代码、提高效率。你将了解到,列表推导式不仅仅是编码的快捷方式,它还能帮助我们以更加Pythonic的方式思考问题。准备好让你的Python代码变得更加优雅和高效了吗?让我们开始吧!
|
8天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
16 1
|
9天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
11天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
27 2
|
1月前
|
存储 安全 Serverless
Python学习四:流程控制语句(if-else、while、for),高级数据类型(字符串、列表、元组、字典)的操作
这篇文章主要介绍了Python中的流程控制语句(包括if-else、while、for循环)和高级数据类型(字符串、列表、元组、字典)的操作。
32 0
|
1月前
|
存储 JSON 数据处理
分析、总结Python使用列表、元组、字典的场景
分析、总结Python使用列表、元组、字典的场景
|
1月前
|
存储 自然语言处理 Java
【Python】列表和元组
【Python】列表和元组
20 0
|
1月前
|
Python
Python操作:字符串--列表--元组--字典--运算符 (一)
Python操作:字符串--列表--元组--字典--运算符 (一)
下一篇
无影云桌面