谷歌用于图像识别的 TensorFlow 模型已开源

本文涉及的产品
图像搜索,7款服务类型 1个月
简介:

随着announcement宣布将用于图像识别的TensorFlow模型,以及对新老方法的精确度和性能进行比较评测的测试方法开源,谷歌Google在过去几年中迈上了一段全新的旅程。2014年的Inception V1,2015年的Inception V2,以及最新发布的Inception V3模型逐渐完善,分别以89.6%、91.8%,以及93.9%准确度的成绩位居ImageNet 2012图像分类测试的前五名。在使用BLEU-4指标衡量机器生成的注解的测试中,通过将一种自然语言的语句翻译成另一种语言并对准确度进行比较,基于TensorFlow的方法相比原本最先进的DistBelief模型也取得了领先两分的成绩。
image

在从原有实现中移植模型,并对其进行完善的过程中,最重要的问题之一在于对图像中的对象进行分类,以及对对象进行描述并将一张图像中的对象与另一张图像中的对象进行关联。为了解决这一问题,该模型在分类操作之外增加了一个微调操作,可以让模型提取用于描述对象细节的有用信息。通过将图像分类操作拆分为多个步骤,首先识别其他操作中确定的对象,并增加形容和预处理操作,并为要处理的注解提供必要的结构,使其在语句结构上更为准确,更类人。

该模型有一个范例:识别铁轨上的火车图像,随后识别火车为黄色夹杂着蓝色。最终合成的结果识别为:黄蓝相间的火车正行驶在铁轨上。虽然在本例中模型能否确定静态图片中对象是运动中的或静止的并不重要,但所输入图像的注解在训练数据中将类似图像中的对象描述为运动中的或静止的,这很重要。

该模型可将之前学习到的图像注解中的不同元素组合在一起,针对更多图像创建全新的注解,新的图像中可以包含多个已分类对象,但所有对象并未包含在同一个训练数据集中。在这个范例中,该模型自行创建出一个之前并不存在的注解。

在对原有模型的实现与新的模型进行性能评测对比发现,在通过Nvidia K20 GPU运行DistBelief以及全新的基于TensorFlow的Inception V3进行的性能对比中,TensorFlow的训练时间(0.7秒)仅为DistBelief(3.0秒)的25%。除了基于TensorFlow的Inception V3图像分类模型,谷歌还提到了即将发布的Inception-ResNet-v2模型,但并未谈到有关该模型的性能评测信息。虽然未使用训练数据集,但他们会通过人工生成的图像注解作为最基础的训练数。

文章转载自 开源中国社区 [http://www.oschina.net]

目录
相关文章
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
将Keras训练好的.hdf5模型转换为TensorFlow的.pb模型,然后再转换为TensorRT支持的.uff格式,并提供了转换代码和测试步骤。
106 3
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
|
22天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
122 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
76 5
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
97 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
95 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
71 5
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
87 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 SQL 数据采集
基于tensorflow、CNN网络识别花卉的种类(图像识别)
基于tensorflow、CNN网络识别花卉的种类(图像识别)
65 1
|
2月前
|
机器学习/深度学习 移动开发 TensorFlow
深度学习之格式转换笔记(四):Keras(.h5)模型转化为TensorFlow(.pb)模型
本文介绍了如何使用Python脚本将Keras模型转换为TensorFlow的.pb格式模型,包括加载模型、重命名输出节点和量化等步骤,以便在TensorFlow中进行部署和推理。
123 0
|
12天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
153 55

热门文章

最新文章