【数据结构与算法】图的两种搜索算法

简介: 【数据结构与算法】图的两种搜索算法

前言


在很多情况下,我们需要遍历图,得到图的一些性质,例如,找出图中与指定的顶点相连的所有顶点,或者判定某

个顶点与指定顶点是否相通,是非常常见的需求。

有关图的搜索,最经典的算法有深度优先搜索和广度优先搜索,接下来我们分别讲解这两种搜索算法。

学习本文前请先阅读这篇文章 【数据结构与算法】图的基础概念和数据模型


深度优先搜索算法


所谓的深度优先搜索,指的是在搜索时,如果遇到一个结点既有子结点,又有兄弟结点,那么先找子结点,然后找兄弟结点。

1671197397389.jpg


如上图所示:

  • 由于边是没有方向的,所以,如果4和5顶点相连,那么4会出现在5的相邻链表中,5也会出现在4的相

邻链表中。

  • 为了不对顶点进行重复搜索,应该要有相应的标记来表示当前顶点有没有搜索过,可以使用一个布尔类型的数组boolean[V] marked,索引代表顶点,值代表当前顶点是否已经搜索,如果已经搜索,标记为true,

如果没有搜索,标记为false;


API设计


类名 DepthFirstSearch
成员变量 1.private boolean[] marked: 索引代表顶点,值表示当前顶点是否已经被搜索2.private int count:记录有多少个顶点与s顶点相通
构造方法 DepthFirstSearch(Graph G,int s):构造深度优先搜索对象,使用深度优先搜索找出G图中s顶点的所有相通顶点
成员方法 1.private void dfs(Graph G, int v):使用深度优先搜索找出G图中v顶点的所有相通顶点2.public boolean marked(int w):判断w顶点与s顶点是否相通3.public int count():获取与顶点s相通的所有顶点的总数


代码实现


/**
 * 图的深度优先搜索算法
 *
 * @author alvin
 * @date 2022/10/31
 * @since 1.0
 **/
public class DepthFirstSearch {
    //索引代表顶点,值表示当前顶点是否已经被搜索
    private boolean[] marked;
    //记录有多少个顶点与s顶点相通
    private int count;
    //构造深度优先搜索对象,使用深度优先搜索找出G图中s顶点的所有相邻顶点
    public DepthFirstSearch(Graph G, int s) {
        //创建一个和图的顶点数一样大小的布尔数组
        marked = new boolean[G.V()];
        dfs(G, s);
    }
    //使用深度优先搜索找出G图中v顶点的所有相邻顶点
    private void dfs(Graph G, int v) {
        //把当前顶点标记为已搜索
        marked[v] = true;
        //遍历v顶点的邻接表,得到每一个顶点w
        for (Integer w : G.adj(v)) {
            //遍历v顶点的邻接表,得到每一个顶点w
            if (!marked[w]) {
                //如果当前顶点w没有被搜索过,则递归搜索与w顶点相通的其他顶点
                dfs(G, w);
            }
        }
        //相通的顶点数量+1
        count++;
    }
    //判断w顶点与s顶点是否相通
    public boolean marked(int w) {
        return marked[w];
    }
    //获取与顶点s相通的所有顶点的总数
    public int count() {
        return count;
    }
}

测试:

public class DepthFirstSearchTest {
    @Test
    public void test() {
        //准备Graph对象
        Graph G = new Graph(13);
        G.addEdge(0,5);
        G.addEdge(0,1);
        G.addEdge(0,2);
        G.addEdge(0,6);
        G.addEdge(5,3);
        G.addEdge(5,4);
        G.addEdge(3,4);
        G.addEdge(4,6);
        G.addEdge(7,8);
        G.addEdge(9,11);
        G.addEdge(9,10);
        G.addEdge(9,12);
        G.addEdge(11,12);
        //准备深度优先搜索对象
        DepthFirstSearch search = new DepthFirstSearch(G, 0);
        //测试与某个顶点相通的顶点数量
        int count = search.count();
        System.out.println("与起点0相通的顶点的数量为:"+count);
        //测试某个顶点与起点是否相同
        boolean marked1 = search.marked(5);
        System.out.println("顶点5和顶点0是否相通:"+marked1);
        boolean marked2 = search.marked(7);
        System.out.println("顶点7和顶点0是否相通:"+marked2);
    }
}

1671197418294.jpg


广度优先搜素算法


所谓的广度优先搜索,指的是在搜索时,如果遇到一个结点既有子结点,又有兄弟结点,那么先找兄弟结点,然后

找子结点。

1671197426924.jpg


  • 可以通过借助一个辅助队列实现,先将1加入到队列中
  • 然后取出1,将1的相邻顶点加入到队列中
  • 依次递归,如下图所示:

1671197433468.jpg


API设计


类名 BreadthFirstSearch
成员变量 1.private boolean[] marked: 索引代表顶点,值表示当前顶点是否已经被搜索2.private int count:记录有多少个顶点与s顶点相通3.private Queue waitSearch: 用来存储待搜索邻接表的点
构造方法 BreadthFirstSearch(Graph G,int s):构造广度优先搜索对象,使用广度优先搜索找出G图中s顶点的所有相邻顶点
成员方法 1.private void bfs(Graph G, int v):使用广度优先搜索找出G图中v顶点的所有相邻顶点2.public boolean marked(int w):判断w顶点与s顶点是否相通3.public int count():获取与顶点s相通的所有顶点的总数


代码实现


/**
 * 图的广度优先搜索算法
 *
 * @author alvin
 * @date 2022/10/31
 * @since 1.0
 **/
public class BreadthFirstSearch {
    //索引代表顶点,值表示当前顶点是否已经被搜索
    private boolean[] marked;
    //记录有多少个顶点与s顶点相通
    private int count;
    //用来存储待搜索邻接表的点
    private Queue<Integer> waitSearch;
    //构造广度优先搜索对象,使用广度优先搜索找出G图中s顶点的所有相邻顶点
    public BreadthFirstSearch(Graph G, int s) {
        this.marked = new boolean[G.V()];
        this.count = 0;
        this.waitSearch = new ArrayDeque<>();
        bfs(G, s);
    }
    //使用广度优先搜索找出G图中v顶点的所有相邻顶点
    private void bfs(Graph G, int v) {
        //把当前顶点v标识为已搜索
        marked[v] = true;
        //让顶点v进入队列,待搜索
        waitSearch.add(v);
        //通过循环,如果队列不为空,则从队列中弹出一个待搜索的顶点进行搜索
        while (!waitSearch.isEmpty()) {
            //弹出一个待搜索的顶点
            Integer wait = waitSearch.poll();
            //遍历wait顶点的邻接表
            for (Integer w : G.adj(wait)) {
                if (!marked[w]) {
                    bfs(G, w);
                }
            }
        }
        //让相通的顶点+1;
        count++;
    }
    //判断w顶点与s顶点是否相通
    public boolean marked(int w) {
        return marked[w];
    }
    //获取与顶点s相通的所有顶点的总数
    public int count() {
        return count;
    }
}

测试代码:

public class BreadthFirstSearchTest {
    @Test
    public void test() {
        //准备Graph对象
        Graph G = new Graph(13);
        G.addEdge(0, 5);
        G.addEdge(0, 1);
        G.addEdge(0, 2);
        G.addEdge(0, 6);
        G.addEdge(5, 3);
        G.addEdge(5, 4);
        G.addEdge(3, 4);
        G.addEdge(4, 6);
        G.addEdge(7, 8);
        G.addEdge(9, 11);
        G.addEdge(9, 10);
        G.addEdge(9, 12);
        G.addEdge(11, 12);
        //准备广度优先搜索对象
        BreadthFirstSearch search = new BreadthFirstSearch(G, 0);
        //测试与某个顶点相通的顶点数量
        int count = search.count();
        System.out.println("与起点0相通的顶点的数量为:" + count);
        //测试某个顶点与起点是否相同
        boolean marked1 = search.marked(5);
        System.out.println("顶点5和顶点0是否相通:" + marked1);
        boolean marked2 = search.marked(7);
        System.out.println("顶点7和顶点0是否相通:" + marked2);
    }
}

1671197452968.jpg


案例应用


某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。目前的道路状况,9号城市和10号城市是否相通?9号城市和8号城市是否相通?

1671197460880.jpg

测试数据格式如上图所示,总共有20个城市,目前已经修改好了7条道路,问9号城市和10号城市是否相通?9号城市和8号城市是否相通?

解题思路:

  1. 创建一个图Graph对象,表示城市;
  2. 分别调用addEdge(0,1),addEdge(6,9),addEdge(3,8),addEdge(5,11),addEdge(2,12),addEdge(6,10),addEdge(4,8),表示已经修建好的道路把对应的城市连接起来;
  3. 通过Graph对象和顶点9,构建DepthFirstSearch对象或BreadthFirstSearch对象;
  4. 调用搜索对象的marked(10)方法和marked(8)方法,即可得到9和城市与10号城市以及9号城市与8号城市是否相通。

代码实现:

public class TrafficProjectGraph {
    public static void main(String[] args) throws Exception{
        //城市数量
        int totalNumber =  20;
        Graph G = new Graph(totalNumber);
        //添加城市的交通路线
        G.addEdge(0,1);
        G.addEdge(6,9);
        G.addEdge(3,8);
        G.addEdge(5,11);
        G.addEdge(2,12);
        G.addEdge(6,10);
        G.addEdge(4,8);
        //构建一个深度优先搜索对象,起点设置为顶点9
        DepthFirstSearch search = new DepthFirstSearch(G, 9);
        //调用marked方法,判断8顶点和10顶点是否与起点9相通
        System.out.println("顶点8和顶点9是否相通:"+search.marked(8));
        System.out.println("顶点10和顶点9是否相通:"+search.marked(10));
    }
}

结果:

1671197470926.jpg

目录
相关文章
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
69 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
14天前
|
算法 搜索推荐 数据库
二分搜索:高效的查找算法
【10月更文挑战第29天】通过对二分搜索的深入研究和应用,我们可以不断挖掘其潜力,为各种复杂问题提供高效的解决方案。相信在未来的科技发展中,二分搜索将继续发挥着重要的作用,为我们的生活和工作带来更多的便利和创新。
23 1
|
1月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
26 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
1月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
32 4
|
1月前
|
搜索推荐 算法
数据结构与算法学习十四:常用排序算法总结和对比
关于常用排序算法的总结和对比,包括稳定性、内排序、外排序、时间复杂度和空间复杂度等术语的解释。
20 0
数据结构与算法学习十四:常用排序算法总结和对比
|
1月前
|
存储 缓存 分布式计算
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
这篇文章是关于数据结构与算法的学习指南,涵盖了数据结构的分类、数据结构与算法的关系、实际编程中遇到的问题以及几个经典的算法面试题。
30 0
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
|
1月前
|
机器学习/深度学习 搜索推荐 算法
探索数据结构:初入算法之经典排序算法
探索数据结构:初入算法之经典排序算法
|
1月前
|
算法 Java 索引
数据结构与算法学习十五:常用查找算法介绍,线性排序、二分查找(折半查找)算法、差值查找算法、斐波那契(黄金分割法)查找算法
四种常用的查找算法:顺序查找、二分查找(折半查找)、插值查找和斐波那契查找,并提供了Java语言的实现代码和测试结果。
20 0
|
1月前
|
机器学习/深度学习 存储 算法
【数据结构与算法基础】——算法复杂度
【数据结构与算法基础】——算法复杂度
|
5月前
|
算法 C++ Python
数据结构与算法===贪心算法
数据结构与算法===贪心算法