使用Numpy进行深度学习中5大反向传播优化算法的性能比较(三)

简介: 使用Numpy进行深度学习中5大反向传播优化算法的性能比较(三)

4、RMSprop

Rmsprop是由著名计算机科学家Geoffrey Hinton (Hinton et al., 2012)提出的另一种高效优化算法。该算法的工作原理与Adagrad相似,只是稍加修改。不像AdaGrad那样取梯度平方的累积和,我们取这些梯度的指数移动平均值。使用指数平均的原因是为了给最近更新的梯度权重大于最近更新的梯度。下面的方程式显示了Rmsprop的更新规则。

image.png

v1,v2=0,0
gamma,lr=0.9,0.4
x1,x2=-4,-6
l1,l2=[],[]
for i in range(20):
  l1.append(x1)
  l2.append(x2)
  v1=gamma*v1+(1-gamma)*(0.2*x1)**2
  v2=gamma*v2+(1-gamma)*(4*x2)**2
  x1=x1-(lr/math.sqrt(v1+c))*0.2*x1
  x2=x2-(lr/math.sqrt(v2+c))*4*x2

Momentum vs Adagrad vs RMSprop

image.png

import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure(figsize=(13,6))
left, bottom, width, height = 100, 0.1, 0.8, 0.8
ax = fig.add_axes([left, bottom, width, height])
start, stop, n_values = -8, 8, 100
x_vals = np.linspace(start, stop, n_values)
y_vals = np.linspace(start, stop, n_values)
X, Y = np.meshgrid(x_vals, y_vals)
Z = np.sqrt(0.1*X**2 + 2*Y**2)
plt.contourf(X,Y,Z,)
plt.plot(l1_gd[:15],l2_gd[:15],color="red",marker="*",markeredgecolor="black",linewidth=3,label="Gradient Descent")
plt.plot(l1_gd_m[:15],l2_gd_m[:15],color="yellow",marker="*",markeredgecolor="orange",linewidth=3,label="Gradient Descent (Momentum =0.5)")
plt.plot(l1_adagrad[:15],l2_adagrad[:15],color="blue",marker="*",markeredgecolor="black",linewidth=3,label="Adagrad")
plt.plot(l1[:15],l2[:15],color="g",marker="*",markeredgecolor="b",linewidth=3,label="RMSprop Algorithm")
plt.figure(figsize=(15,10))
plt.figure(figsize=(15,10))
ax.set_title('Level Sets of the Function',size=20)
ax.set_xlabel('x (cm)')
ax.set_ylabel('y (cm)')
ax.legend()
plt.show()

显而易见,当收敛到最优点时,梯度下降算法在垂直方向上产生巨大的振荡,RMSprop限制了垂直运动,加速了水平方向。此外,虽然动量减小了振荡,RMSprop提供了更可靠和更快的收敛。

5、Adam

自适应矩估计是另一种计算每个参数的自适应学习率的优化器。与其他优化器相比,它更加健壮和可靠,因为它基本上结合了动量和RMSprop(即。移动类似梯度的动量的平均值,并使用梯度的平方来调整学习速率,如RMSprop)。更精确地说,Adam算法执行如下-

image.png

v1,v2,s1,s2=0,0,0,0
gamma,beta,lr=0.9,0.999,0.4
x1,x2=-6,-6
l1_adam,l2_adam=[],[]
for i in range(20):
  l1_adam.append(x1)
  l2_adam.append(x2)
  v1=gamma*v1+(1-gamma)*(0.2*x1)
  v2=gamma*v2+(1-gamma)*(4*x2)
  s1=beta*s1+(1-beta)*(0.2*x1)**2
  s2=beta*s2+(1-beta)*(4*x2)**2
  m_hat_v1= v1 / (1 - np.power(gamma, i+1))
  m_hat_v2 = v2 / (1 - np.power(gamma, i+1))
  s_hat_s1= s1 / (1 - np.power(beta, i+1))
  s_hat_s2 = s2 / (1 - np.power(beta, i+1))
  x1=x1-(lr)*(m_hat_v1/math.sqrt((s_hat_s1)+c))
  x2=x2-(lr)*(m_hat_v2/math.sqrt((s_hat_s2)+c))
  print(x1,x2)
  if abs(x1)<=0.1 and abs(x2)<0.1:
    break

在收敛期间的轨迹汇总

image.png

import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure(figsize=(13,6))
left, bottom, width, height = 100, 0.1, 0.8, 0.8
ax = fig.add_axes([left, bottom, width, height])
start, stop, n_values = -8, 8, 100
x_vals = np.linspace(start, stop, n_values)
y_vals = np.linspace(start, stop, n_values)
X, Y = np.meshgrid(x_vals, y_vals)
Z = np.sqrt(0.1*X**2 + 2*Y**2)
plt.contourf(X,Y,Z,)
plt.plot(l1_gd[:15],l2_gd[:15],color="red",marker="*",markeredgecolor="black",linewidth=3,label="Gradient Descent")
plt.plot(l1_gd_m[:15],l2_gd_m[:15],color="yellow",marker="*",markeredgecolor="orange",linewidth=3,label="Gradient Descent (Momentum =0.5)")
plt.plot(l1_adagrad[:15],l2_adagrad[:15],color="blue",marker="*",markeredgecolor="black",linewidth=3,label="Adagrad")
plt.plot(l1[:15],l2[:15],color="g",marker="*",markeredgecolor="b",linewidth=3,label="RMSprop Algorithm")
plt.plot(l1_adam[:20],l2_adam[:20],color="Brown",marker="*",markeredgecolor="pink",linewidth=3,label="Adam")
plt.figure(figsize=(15,10))
plt.figure(figsize=(15,10))
ax.set_title('Level Sets of the Function',size=20)
ax.set_xlabel('x (cm)')
ax.set_ylabel('y (cm)')
ax.legend()
plt.show()

正如在最后的图中所看到的,Adam优化器在直线路径上导致最快的收敛。在Adam的例子中,它通过累积之前梯度的总和来减弱振荡,并且由于梯度的平方项,它遵循一条直线,类似于RMSprop。这导致了一个明显的结论,即Adam是Momentum和RMSprop的结合版本。从上图中我们可以很容易地看出为什么Adam是deep learning中最流行的优化器。即使从离最优值(-6,-6)很远的地方开始,Adam也能以最小的迭代收敛得最快。

目录
相关文章
|
8月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
3月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
260 4
|
3月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
4月前
|
算法 数据挖掘 异构计算
【多目标优化算法比较】MOFPA、MOFA、MOCS、MOBA、MOHHO五种多目标优化算法性能对比研究(Matlab代码实现)
【多目标优化算法比较】MOFPA、MOFA、MOCS、MOBA、MOHHO五种多目标优化算法性能对比研究(Matlab代码实现)
335 0
【多目标优化算法比较】MOFPA、MOFA、MOCS、MOBA、MOHHO五种多目标优化算法性能对比研究(Matlab代码实现)
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
602 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
11月前
|
机器学习/深度学习 数据采集 自然语言处理
深度学习实践技巧:提升模型性能的详尽指南
深度学习模型在图像分类、自然语言处理、时间序列分析等多个领域都表现出了卓越的性能,但在实际应用中,为了使模型达到最佳效果,常规的标准流程往往不足。本文提供了多种深度学习实践技巧,包括数据预处理、模型设计优化、训练策略和评价与调参等方面的详细操作和代码示例,希望能够为应用实战提供有效的指导和支持。
|
5月前
|
机器学习/深度学习 算法 5G
【MUSIC、最大似然与克拉美-罗下界】MUSIC与ESPRIT 算法来估计到达角(AoA),并尝试推导克拉美-罗下界(CRLB)以分析其性能研究(Matlab代码实现)
【MUSIC、最大似然与克拉美-罗下界】MUSIC与ESPRIT 算法来估计到达角(AoA),并尝试推导克拉美-罗下界(CRLB)以分析其性能研究(Matlab代码实现)
279 0
|
7月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
|
9月前
|
传感器 存储 算法
基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
本程序基于ECC(椭圆曲线密码学)簇内分组密钥管理算法,对无线传感器网络(WSN)进行MATLAB性能仿真。通过对比网络通信开销、存活节点数量、网络能耗及数据通信量四个关键指标,验证算法的高效性和安全性。程序在MATLAB 2022A版本下运行,结果无水印展示。算法通过将WSN划分为多个簇,利用ECC生成和分发密钥,降低计算与通信成本,适用于资源受限的传感器网络场景,确保数据保密性和完整性。
|
10月前
|
算法
一次推理,实现六大3D点云分割任务!华科发布大一统算法UniSeg3D,性能新SOTA
华中科技大学研究团队提出了一种名为UniSeg3D的创新算法,该算法通过一次推理即可完成六大3D点云分割任务(全景、语义、实例、交互式、指代和开放词汇分割),并基于Transformer架构实现任务间知识共享与互惠。实验表明,UniSeg3D在多个基准数据集上超越现有SOTA方法,为3D场景理解提供了全新统一框架。然而,模型较大可能限制实际部署。
867 15