机器学习中评估分类模型性能的10个重要指标(一)

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
视觉智能开放平台,图像资源包5000点
简介: 机器学习中评估分类模型性能的10个重要指标(一)

在这篇文章中,我们将学习10个最重要的模型性能度量,这些度量可用于评估分类模型的模型性能。

以下是我们将通过示例以相互关联的方式研究的10个指标:

  • Confusion Matrix
  • Type I Error
  • Type II Error
  • Accuracy
  • Recall or True Positive Rate or Sensitivity
  • Precision
  • Specificity
  • F1 Score
  • ROC Curve- AUC Score
  • PR Curve

一旦我们了解了适当的用法以及如何根据问题陈述来解释这些度量,那么衡量分类模型的强度就不是问题了。

我们将使用一个数据集的例子,它有yes和no标签,用于训练逻辑回归模型。这个用例可以是任何分类问题-垃圾邮件检测、癌症预测、损耗率预测、活动目标预测等。我们将在本文需要时参考特殊用例。目前,我们将考虑一个简单的逻辑模型,它必须预测是或否。


首先,逻辑模型可以给出两种输出:

1.它以输出值的形式给出类标签(是/否、1/0、恶性/良性、吸引/保留、垃圾邮件/非垃圾邮件等)

2.它给出了介于0到1之间的概率值作为输出值,以表示某个特定观察事件的可能性或可能性。

类标签场景可以进一步细分为平衡或不平衡数据集,这两种情况都不能/不应该基于类似的度量进行判断。有些指标更适合但不是另一个,反之亦然。类似地,概率场景有不同于类标签的模型性能度量。

下面是流程图,这是一个完美的总结,也是这篇文章的一个完美的前言,我们将在最后再次回顾这个流程图,以确保我们了解所有的指标。

image.png

Confusion Matrix

image.png

我们从一个开发数据集开始,同时构建任何统计或ML模型。把数据集分成两部分:训练和测试。保留测试数据集,并使用训练数据集训练模型。一旦模型准备好预测,我们就尝试在测试数据集上进行预测。一旦我们将结果分割成一个类似于上图所示的矩阵,我们就可以看到我们的模型有多少能够正确预测,有多少预测是错误的。

我们用测试数据集中的数字填充以下4个单元格(例如,有1000个观察值)。

image.png

TP(真阳性):该列的实际标签在测试数据集中为“是”,我们的logistic回归模型也预测为“是”。(500次观察)

TN(真阴性):在测试数据集中,该列的实际标签为“否”,而我们的logistic回归模型也预测为“否”。(200次观察)

FP(假阳性):该列的实际标签在测试数据集中为“否”,但我们的logistic回归模型预测为“是”。(100次观察)

FN(假阴性):在测试数据集中,该列的实际标签为“是”,但我们的逻辑回归模型预测为“否”。(200次观察)

这4个单元构成了“混淆矩阵”,就像在矩阵中一样,它可以通过清晰地描绘模型的预测能力来缓解对模型优度的所有混淆。

混淆矩阵是一个表,通常用于描述一个分类模型(或“分类器”)在一组已知真实值的测试数据上的性能

目录
相关文章
|
21天前
|
机器人
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领精美计时器
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领精美计时器
76 3
|
1天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
10 1
|
10天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
40 1
|
14天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
18天前
|
机器学习/深度学习 缓存 监控
利用机器学习优化Web性能和用户体验
【10月更文挑战第16天】本文探讨了如何利用机器学习技术优化Web性能和用户体验。通过分析用户行为和性能数据,机器学习可以实现动态资源优化、预测性缓存、性能瓶颈检测和自适应用户体验。文章还介绍了实施步骤和实战技巧,帮助开发者更有效地提升Web应用的速度和用户满意度。
|
19天前
|
机器人
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领 200个 精美计时器等你领
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领 200个 精美计时器等你领
64 2
|
24天前
|
人工智能 算法 测试技术
PAI 大语言模型评测平台现已支持裁判员模型评测
本文将为您介绍如何在 PAI 大语言模型评测平台,基于裁判员模型,评价开源模型或者微调后模型的性能。该功能限时免费,欢迎使用。
|
25天前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
48 1
|
7天前
|
机器学习/深度学习 算法
探索机器学习模型的可解释性
【10月更文挑战第29天】在机器学习领域,一个关键议题是模型的可解释性。本文将通过简单易懂的语言和实例,探讨如何理解和评估机器学习模型的决策过程。我们将从基础概念入手,逐步深入到更复杂的技术手段,旨在为非专业人士提供一扇洞悉机器学习黑箱的窗口。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024

相关产品

  • 人工智能平台 PAI
  • 下一篇
    无影云桌面