Python数据结构与算法(17)---归并排序

简介: Python数据结构与算法(17)---归并排序

归并排序


归并排序,又名Merge Sort,是建立在归并操作上的一种有效的排序算法。其具体原理有2个关键字:分与治。


分:我们需要进行分的操作,将数列均衡的分成2部分(n//2),当然如果是奇数,可以自己决定将多余的数分到前半部分,还是后半部分。当分成2部分之后,在递归的对左右子序列继续2分,以此类推,直到只有1个元素,再也分不下去。


治:所有元素分完之后,开始大小比较归并操作,从2个元素开始进行归并的比较,直到归并到n//2为止。


时间复杂度为:O(n log n) 。


图解归并排序

相信读者看完原理就应该直到了,治其实就是分的反操作。当然,原理毕竟还是可能不容易理解,下面博主用图给大家绘制出归并排序的步骤:


图解应该很好看懂,就是先分解,在合并,不过合并的过程中唯一与分解过程不同的地方是,需要对其进行排序。


实战:归并排序

这应该是数据结构的最后一个算法,不过算法并不仅仅只有这些。通过这些基础的算法所衍生出来的算法其实也是很多的,所以别小看这些算法。


回到我们今天的主题,下面我们通过Python代码来实现归并排序,示例如下:

def merge(left, right):
    r, l = 0, 0
    temp = []  # 临时列表
    lmax = len(left)
    rmax = len(right)
    while l < lmax and r < rmax:
        if left[l] < right[r]:  # 排序,小于等于的放左边
            temp.append(left[l])
            l += 1
        else:
            temp.append(right[r])  # 排序,大的放右边
            r += 1
    temp += list(left[l:])
    temp += list(right[r:])
    return temp
def merge_sort(my_list):
    if len(my_list) <= 1:  # 当数列长度小于1时,直接返回
        return my_list
    mid = len(my_list) // 2  # 获取对半索引为止
    left = merge_sort(my_list[:mid])  # 递归方法归并左边列表
    right = merge_sort(my_list[mid:])  # 递归方法归并右边列表
    return merge(left, right)  # 并归返回结果
if __name__ == "__main__":
    my_list = [8, 0, 4, 3, 2, 1]
    print("排序前的数组:", my_list)
    print("排序后的数组:", merge_sort(my_list))

运行之后,效果如下:


相关文章
|
9天前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
22 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
5天前
|
存储 索引 Python
Python常用数据结构——集合
Python常用数据结构——集合
19 3
|
5天前
|
存储 数据安全/隐私保护 Python
Python常用数据结构——字典的应用
Python常用数据结构——字典的应用
|
7天前
|
Python
逆天改命!掌握Python并查集,数据结构难题从此不再是你的痛!
在编程旅程中,遇到棘手的数据结构难题是否让你苦恼?别担心,Python并查集(Union-Find)是你的得力助手。这是一种高效处理不相交集合合并及查询的数据结构,广泛应用于网络连通性、社交网络圈子划分等场景。通过维护每个集合的根节点,它实现了快速合并与查询。本文将介绍并查集的基本概念、应用场景以及如何在Python中轻松实现并查集,帮助你轻松应对各种数据结构挑战。
17 3
|
7天前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
22 2
|
10天前
|
算法 Python
震惊!Python 算法设计背后,时间复杂度与空间复杂度的惊天秘密大起底!
在 Python 算法设计中,理解并巧妙运用时间复杂度和空间复杂度的知识,是实现高效、优雅代码的必经之路。通过不断地实践和优化,我们能够在这两个因素之间找到最佳的平衡点,创造出性能卓越的程序。
26 4
|
11天前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
28 4
|
9天前
|
算法 程序员 Python
程序员必看!Python复杂度分析全攻略,让你的算法设计既快又省内存!
在编程领域,Python以简洁的语法和强大的库支持成为众多程序员的首选语言。然而,性能优化仍是挑战。本文将带你深入了解Python算法的复杂度分析,从时间与空间复杂度入手,分享四大最佳实践:选择合适算法、优化实现、利用Python特性减少空间消耗及定期评估调整,助你写出高效且节省内存的代码,轻松应对各种编程挑战。
20 1
|
9天前
|
算法 计算机视觉 Python
Python并查集大揭秘:让你在算法界呼风唤雨,秒杀一切复杂场景!
在编程与算法的广袤天地中,总有一些工具如同神兵利器,能够助你一臂之力,在复杂的问题前游刃有余。今天,我们就来深入探讨这样一件神器——Python并查集(Union-Find),看看它是如何让你在算法界呼风唤雨,轻松应对各种复杂场景的。
22 2
|
9天前
|
机器学习/深度学习 人工智能 算法
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台。果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。
28 0
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
下一篇
无影云桌面