Python:学习Numpy,收藏这一篇文章就Go了(二)

简介: Python:学习Numpy,收藏这一篇文章就Go了(二)

算术运算


对应元素相乘

简单的理解就是2个维度相同的Numpy数组,各个对应位置互相相乘得到的一个新的Numpy数组。图解如下:

将上面的图转换为代码如下所示:

import numpy as np
A = np.array([[1, 2], [3, 4]])
B = np.array([[4, 5], [6, 7]])
print(A * B)
print(np.multiply(A, B))


运行结果与上图一致,当然Numpy数组对应元素相乘有2种方式:一种直接通过“*”号进行运算,一种是通过multiply()函数进行运算,结果一样。


有时候我们在进行图像处理时,会对对应的像素进行乘积运算,但每个像素的变更运算是一样的,难道我们创建一个同样维度的数组进行运算吗?显然不划算。


假如,每个像素只是+2,或者*2,我们可以直接将Numpy数组加乘这个值即可。如下面代码所示:

A = np.array([[1, 2], [3, 4]])
print(A + 2)
print(A * 2)


运算之后,效果如下:


点积运算

点积就是Dot Product,又称之为内积,也就是我们线性代数中常常用到的矩阵运算,在Numpy中的函数为:np.dot(),其具体定义如下所示:

np.dot(a,b,out=None)

运算的过程如下所示:


简单的理解点积就是第1行*第1列,对应元素乘完相加就是矩阵的第1个值。第1行*第2列,对应元素相乘得到第2个值,之后的以此类推。代码如下:

A = np.array([[1, 2], [3, 4]])
B = np.array([[4, 5], [6, 7]])
print(np.dot(A, B))


点积运算的2个数组必须行列数相等才能运算,不然无法进行点积运算。


数组变形


改变向量的维度

有过OpenGL开发经验的读者,应该都使用过改变向量的维度,这也是深度学习中常常需要的基础处理步骤。而Numpy改变维度的函数如下表所示:

函数 意义
nd.reshape 将向量nd维度进行改变,不修改向量本身
nd.resize 将向量nd维度进行改变,修改向量本身
nd.T 将向量nd进行转置
nd.ravel 将向量nd进行展平,即多维变一维,不会产生原向量的副本
nd.flatten 将向量nd进行展平,即多维变一维,返回原数组的副本
nd.squeeze 只能对一维数组进行降维,多维不会报错,但没有任何影响
nd.transpose 对高维矩阵进行轴对换

示例代码如下所示:

# 改变向量维度
nd = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
print(nd.reshape(5, 2))
nd = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
print(nd.resize(5, 2))
# 行列对换
nd = np.arange(12).reshape(3, 4)
print(nd.T)
# 按照列优先展平,没有参数按照行优先展平
nd = np.array([[1, 2], [3, 4]])
print(nd.ravel('F'))

# 展平为一维
nd = np.array([[1, 2], [3, 4]])
print(nd.flatten())
# 将矩阵中含1的维度去掉
nd = np.arange(3).reshape(3, 1)
print(nd)
print(nd.squeeze())
# 矩阵轴对换
nd = np.arange(24).reshape(2, 3, 4)
print(nd.shape)
print(nd.transpose().shape)


比如transpose()函数,在RGB转GBR时就可以用到


合并数组

除了改变数组维度之外,我们还需要合并数组。比如在对股票进行处理的时候,需要将多个表格进行合并等。下面,也有一张合并函数的表格:

函数 意义
np.append 内存占用大
np.concatenate 没有内存问题
np.stack 沿新轴加入一系列数组
np.hstack 堆栈数组垂直顺序(行)
np.vstack 堆栈数组垂直顺序(列)
np.dstack 堆栈数组按顺序深入,作用于第3维
np.vsplit 将数组分解成垂直的多个子数组的列表

其中,stack、hstack、dstack要求合并的数组具有相同的shape,也就是维度必须一模一样。


而append与concatenate操作的数组必须有相同的行数或者列数(满足一个即可)。


append、concatenate以及stack都有一个axis参数,控制数组的合并是按行还是列进行。


举例如下:

# append
a = np.arange(4).reshape(2, 2)
b = np.arange(4).reshape(2, 2)
print(np.append(a, b, axis=0))
print(np.append(a, b, axis=1))
print("-------------")
# concatenate
a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6]])
print(np.concatenate((a, b), axis=0))
print(np.concatenate((a, b.T), axis=1))
print("-------------")
# stack
a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6], [7, 8]])
print(np.stack((a, b), axis=0))


运行之后,效果如下:


速度优势


在前面我们介绍time库时,就详细讲解了time也可以进行算法时间复杂度的测试。今天,我们就来测试一下,Numpy与普通运算哪个更快。


首先,我们计算100万以内每个数的sin值。常规的代码如下所示:

import numpy as np
import time
a = [i for i in range(1, 1000001)]
start_time = time.perf_counter()
for i, num in enumerate(a):
    a[i]=np.sin(num)
print("执行的时长为:", time.perf_counter() - start_time)


然后我们进行Numpy计算的测试:

a = [i for i in range(1, 1000001)]
start_time = time.perf_counter()
a = np.sin(num)
print("执行的时长为:", time.perf_counter() - start_time)


运行之后两者时间的对比如下:



可以看到numpy的速度比math快多了。而且如果是大量的点积运算,Numpy与普通的方式对比几乎能快400倍的速度。所以,在深度学习,科学计算等领域,Numpy具有绝对的优势。

相关文章
|
20天前
|
数据采集 监控 Java
go语言编程学习
【11月更文挑战第3天】
35 7
|
22天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
38 2
|
28天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
32 3
|
1月前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
50 5
|
1月前
|
设计模式 测试技术 Go
学习Go语言
【10月更文挑战第25天】学习Go语言
25 4
|
29天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
46 2
|
2月前
|
Go Docker Python
docker的python与go镜像的制作
docker的python与go镜像的制作
34 1
|
2月前
|
机器学习/深度学习 数据采集 算法
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
【10月更文挑战第5天】随着数据科学和机器学习领域的快速发展,处理大规模数据集的能力变得至关重要。Python凭借其强大的生态系统,尤其是NumPy、Pandas和SciPy等库的支持,在这个领域占据了重要地位。本文将深入探讨这些库如何帮助科学家和工程师高效地进行数据分析,并通过实际案例来展示它们的一些高级应用。
57 0
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
|
2月前
|
数据挖掘 索引 Python
Python数据分析篇--NumPy--进阶
Python数据分析篇--NumPy--进阶
18 0
|
2月前
|
数据挖掘 索引 Python
Python数据分析篇--NumPy--入门
Python数据分析篇--NumPy--入门
36 0