Python数据结构与算法(9)---优先级队列queue

简介: Python数据结构与算法(9)---优先级队列queue

前言


queue库提供了一个适用于多线程编程的先进先出(FIFO)数据结构,可以用来在生产者与消费者线程之间安全地传递消息或其他数据。


它会为调用者处理锁定,使多个线程可以安全而更容易地处理同一个Queue实例。Queue的大小可能受限,以限制内存使用或处理。


基本用法


Queue类实现了一个基本的先进先出容器。使用put()将元素增加到这个序列的一端,使用get()从另一端删除。具体代码如下所示:

import queue
q = queue.Queue()
for i in range(1, 10):
    q.put(i)
while not q.empty():
    print(q.get(), end="  ")


运行之后,效果如下:


这里我们依次添加1到10到队列中,因为先进先出,所以出来的顺序也与添加的顺序相同。


LIFO队列


既然有先进先出队列queue,那么数据结构中肯定也有后进先出的队列。后进先出的队列为:LifoQueue,示例如下:

import queue
q = queue.LifoQueue()
for i in range(1, 10):
    q.put(i)
while not q.empty():
    print(q.get(), end="  ")


运行之后,效果如下:


优先队列


在操作系统中,我们常常会根据优先级来处理任务,比如系统的优先级最高,我们肯定优先处理系统任务,然后才处理用户的任务。同样,queue库给我们提供了PriorityQueue来处理优先级的队列。


示例如下:


import queue
import threading
class Job:
    def __init__(self, priority, desc):
        self.priority = priority
        self.desc = desc
        print("New Job:", desc)
        return
    def __eq__(self, other):
        try:
            return self.priority == other.priority
        except AttributeError:
            return NotImplemented
    def __lt__(self, other):
        try:
            return self.priority > other.priority
        except AttributeError:
            return NotImplemented
def process_Job(q):
    while True:
        next_job = q.get()
        print(next_job.desc)
        q.task_done()
q = queue.PriorityQueue()
q.put(Job(5, "Five Job"))
q.put(Job(15, "Fifteen Job"))
q.put(Job(1, "One Job"))
workers = [
    threading.Thread(target=process_Job, args=(q,)),
    threading.Thread(target=process_Job, args=(q,)),
]
for work in workers:
    work.setDaemon(True)
    work.start()
q.join()


运行之后,效果如下:


这里,我们默认数值越大优先级越高,可以看到15先执行,然后再是5,1任务。这个例子展现了有多个线程在处理任务时,要根据get()时队列中元素的优先级来处理。

相关文章
|
24天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
114 9
|
3天前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
|
2天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
13天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
46 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
13天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
47 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
13天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
55 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
18天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
32 2
|
27天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
34 3
|
26天前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
73 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
下一篇
无影云桌面