Redis入门到通关之数据结构解析-Dict

简介: Redis入门到通关之数据结构解析-Dict

概述


我们知道Redis是一个键值型(Key-Value Pair)的数据库,我们可以根据键实现快速的增删改查。而键与值的映射关系正是通过Dict来实现的。

Dict由三部分组成,分别是:哈希表(DictHashTable)、哈希节点(DictEntry)、字典(Dict)

当我们向Dict添加键值对时,Redis首先根据key计算出hash值(h),然后利用 h & sizemask来计算元素应该存储到数组中的哪个索引位置。

我们存储k1=v1,假设k1的哈希值h =1,则1&3 =1,因此k1=v1要存储到数组角标1位置。


构成


Dict由三部分组成,分别是:哈希表(DictHashTable)、哈希节点(DictEntry)、字典(Dict)


Dict的扩容


Dict 中的 HashTable 就是数组结合单向链表的实现,当集合中元素较多时,必然导致哈希冲突增多,链表过长,则查询效率会大大降低。

Dict在每次新增键值对时都会检查负载因子(LoadFactor = used/size) ,满足以下两种情况时会触发哈希表扩容:

  • 哈希表的 LoadFactor >= 1,并且服务器没有执行 BGSAVE 或者 BGREWRITEAOF 等后台进程;
  • 哈希表的 LoadFactor > 5 ;


Dict的rehash


不管是扩容还是收缩,必定会创建新的哈希表,导致哈希表的size和sizemask变化,而key的查询与sizemask有关。因此必须对哈希表中的每一个key重新计算索引,插入新的哈希表,这个过程称为rehash。过程是这样的:

  • 计算新hash表的realeSize,值取决于当前要做的是扩容还是收缩:
  • 如果是扩容,则新size为第一个大于等于dict.ht[0].used + 1的2^n
  • 如果是收缩,则新size为第一个大于等于dict.ht[0].used的2^n (不得小于4)
  • 按照新的realeSize申请内存空间,创建dictht,并赋值给dict.ht[1]
  • 设置dict.rehashidx = 0,标示开始rehash
  • 将dict.ht[0]中的每一个dictEntry都rehash到dict.ht[1]
  • 将dict.ht[1]赋值给dict.ht[0],给dict.ht[1]初始化为空哈希表,释放原来的dict.ht[0]的内存
  • 将rehashidx赋值为-1,代表rehash结束
  • 在rehash过程中,新增操作,则直接写入ht[1],查询、修改和删除则会在dict.ht[0]和dict.ht[1]依次查找并执行。这样可以确保ht[0]的数据只减不增,随着rehash最终为空

整个过程可以描述成:


总结


Dict的结构:

  • 类似java的HashTable,底层是数组加链表来解决哈希冲突
  • Dict包含两个哈希表,ht[0]平常用,ht[1]用来rehash

Dict的伸缩:

  • 当LoadFactor大于5或者LoadFactor大于1并且没有子进程任务时,Dict扩容
  • 当LoadFactor小于0.1时,Dict收缩
  • 扩容大小为第一个大于等于used + 1的2^n
  • 收缩大小为第一个大于等于used 的2^n
  • Dict采用渐进式rehash,每次访问Dict时执行一次rehash
  • rehash时ht[0]只减不增,新增操作只在ht[1]执行,其它操作在两个哈希表
相关文章
|
存储 缓存 NoSQL
Redis 服务器全方位介绍:从入门到核心原理
Redis是一款高性能内存键值数据库,支持字符串、哈希、列表等多种数据结构,广泛用于缓存、会话存储、排行榜及消息队列。其单线程事件循环架构保障高并发与低延迟,结合RDB和AOF持久化机制兼顾性能与数据安全。通过主从复制、哨兵及集群模式实现高可用与横向扩展,适用于现代应用的多样化场景。合理配置与优化可显著提升系统性能与稳定性。
597 0
|
6月前
|
存储 缓存 NoSQL
【📕分布式锁通关指南 12】源码剖析redisson如何利用Redis数据结构实现Semaphore和CountDownLatch
本文解析 Redisson 如何通过 Redis 实现分布式信号量(RSemaphore)与倒数闩(RCountDownLatch),利用 Lua 脚本与原子操作保障分布式环境下的同步控制,帮助开发者更好地理解其原理与应用。
403 6
|
5月前
|
消息中间件 缓存 NoSQL
Redis各类数据结构详细介绍及其在Go语言Gin框架下实践应用
这只是利用Go语言和Gin框架与Redis交互最基础部分展示;根据具体业务需求可能需要更复杂查询、事务处理或订阅发布功能实现更多高级特性应用场景。
349 86
|
7月前
|
存储 缓存 NoSQL
Redis核心数据结构与分布式锁实现详解
Redis 是高性能键值数据库,支持多种数据结构,如字符串、列表、集合、哈希、有序集合等,广泛用于缓存、消息队列和实时数据处理。本文详解其核心数据结构及分布式锁实现,帮助开发者提升系统性能与并发控制能力。
|
5月前
|
存储 消息中间件 NoSQL
Redis数据结构:别小看这5把“瑞士军刀”,用好了性能飙升!
Redis提供5种基础数据结构及多种高级结构,如String、Hash、List、Set、ZSet,底层通过SDS、跳表等实现高效操作。灵活运用可解决缓存、计数、消息队列、排行榜等问题,结合Bitmap、HyperLogLog、GEO更可应对签到、UV统计、地理位置等场景,是高性能应用的核心利器。
|
5月前
|
存储 缓存 NoSQL
Redis基础命令与数据结构概览
Redis是一个功能强大的键值存储系统,提供了丰富的数据结构以及相应的操作命令来满足现代应用程序对于高速读写和灵活数据处理的需求。通过掌握这些基础命令,开发者能够高效地对Redis进行操作,实现数据存储和管理的高性能方案。
159 12
|
5月前
|
存储 消息中间件 NoSQL
【Redis】常用数据结构之List篇:从常用命令到典型使用场景
本文将系统探讨 Redis List 的核心特性、完整命令体系、底层存储实现以及典型实践场景,为读者构建从理论到应用的完整认知框架,助力开发者在实际业务中高效运用这一数据结构解决问题。
|
5月前
|
存储 缓存 NoSQL
【Redis】 常用数据结构之String篇:从SET/GET到INCR的超全教程
无论是需要快速缓存用户信息,还是实现高并发场景下的精准计数,深入理解String的特性与最佳实践,都是提升Redis使用效率的关键。接下来,让我们从基础命令开始,逐步揭开String数据结构的神秘面纱。
|
9月前
|
存储 NoSQL 算法
Redis设计与实现——数据结构与对象
Redis 是一个高性能的键值存储系统,其数据结构设计精妙且高效。主要包括以下几种核心数据结构:SDS、链表、字典、跳跃表、整数集合、压缩列表。此外,Redis 对象通过类型和编码方式动态转换,优化内存使用,并支持引用计数、共享对象和淘汰策略(如 LRU/LFU)。这些特性共同确保 Redis 在性能与灵活性之间的平衡。

推荐镜像

更多
  • DNS