【智能算法】MFO飞蛾扑火算法求解无约束多元函数最值(Java代码实现)

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 【智能算法】MFO飞蛾扑火算法求解无约束多元函数最值(Java代码实现)

@[toc]


前言

本文以求解二元函数最小值为例,如果需要求解多元函数,只需要修改以下变量即可:

  • varNum:变量维度数
  • ub和lb:变量的上下界
  • vMaxArr:每个维度的搜索速度限制

优化目标

目标:在变量区间范围最小化 Z = x^2 + y^2 - xy - 10x - 4y +60

求解结果

变量取值为:[8.000000075136509, 6.000000056246476]
最优解为:7.999999999999979

搜索过程可视化

在这里插入图片描述

Java算法代码

import java.util.Arrays;
import java.util.Comparator;
import java.util.Random;

/**
 * @Author:WSKH
 * @ClassName:MFO_Solve
 * @ClassType:
 * @Description:
 * @Date:2022/6/8/18:26
 * @Email:1187560563@qq.com
 * @Blog:https://blog.csdn.net/weixin_51545953?type=blog
 */
public class MFO_Solve {

    // 飞蛾对象
    class Moth {
        // 当前飞蛾的坐标(自变量数组)
        double[] curVars;
        // 当前自变量对应的目标函数值
        double curObjValue;
        // 适应度(解决最小化问题,所以适应度为目标函数值的倒数)
        double fit;
        // 火焰(飞蛾目前到过的最佳位置)
        double[] bestVars;
        double bestObjValue;
        double bestFit;

        // 全参构造
        public Moth(double[] curVars, double curObjValue, double fit, double[] bestVars, double bestObjValue, double bestFit) {
            this.curVars = curVars;
            this.curObjValue = curObjValue;
            this.fit = fit;
            this.bestVars = bestVars;
            this.bestObjValue = bestObjValue;
            this.bestFit = bestFit;
        }
    }

    // 算法参数
    // 变量个数
    int varNum = 2;
    // 最大迭代次数
    int maxGen = 500;
    // 飞蛾群中飞蛾的个数
    int mothNum = 500;
    // 螺旋常量
    double b = 2;
    // 每一次搜索的火焰数
    int flyToFireCnt = 20;
    // 变量的上下界
    double[] ub = new double[]{1000, 1000};
    double[] lb = new double[]{-1000, -1000};
    // 随机数对象
    Random random = new Random();
    // 飞蛾群
    Moth[] moths;
    // 最佳的飞蛾
    Moth bestMoth;
    // 记录迭代过程
    public double[][][] positionArr;
    // 当前记录的行数
    int r;

    // 求解主函数
    public void solve() {
        // 初始化飞蛾群
        initMoths();
        // 开始迭代
        for (int i = 0; i < maxGen; i++) {
            flyToFire();
            report();
        }
        // 输出最好的结果
        System.out.println("变量取值为:" + Arrays.toString(bestMoth.curVars));
        System.out.println("最优解为:" + bestMoth.curObjValue);
    }

    // 扑火
    void flyToFire() {
        // 先按照火焰热度排序,热度高的排前面
        Arrays.sort(moths, new Comparator<Moth>() {
            @Override
            public int compare(Moth o1, Moth o2) {
                return Double.compare(o2.bestFit,o1.bestFit);
            }
        });
        // 开始扑火
        for (int i = 0; i < mothNum; i++) {
            int c = 0;
            for (int j = 0; j < mothNum; j++) {
                if (i != j && c <= flyToFireCnt) {
                    Moth tempMoth = copyMoth(moths[i]);
                    for (int m = 0; m < varNum; m++) {
                        double t = (random.nextDouble() - 0.5) * 2;
                        double move = Math.abs(tempMoth.curVars[m] - moths[j].bestVars[m]) * Math.exp(b * t) * Math.cos(2 * Math.PI * t) + moths[j].bestVars[m] - tempMoth.curVars[m];
                        moveMoth(tempMoth, m, move);
                    }
                    updateMoth(tempMoth);
                    moths[i] = tempMoth;
                    if (tempMoth.fit > bestMoth.fit) {
                        bestMoth = copyMoth(tempMoth);
                    }
                    c++;
                }
            }
        }
    }

    // 记录
    void report() {
        for (int i = 0; i < moths.length; i++) {
            for (int j = 0; j < varNum; j++) {
                positionArr[r][i][j] = moths[i].curVars[j];
            }
        }
        r++;
    }

    // 初始化飞蛾群
    private void initMoths() {
        positionArr = new double[2 * maxGen][mothNum][varNum];
        moths = new Moth[mothNum];
        for (int i = 0; i < mothNum; i++) {
            moths[i] = getRandomMoth();
            if (i == 0 || bestMoth.fit < moths[i].fit) {
                bestMoth = copyMoth(moths[i]);
            }
        }
    }

    // 控制飞蛾在第m个维度上移动n个距离
    public void moveMoth(Moth moth, int m, double n) {
        // 移动
        moth.curVars[m] += n;
        // 超出定义域的判断
        if (moth.curVars[m] < lb[m]) {
            moth.curVars[m] = lb[m];
        }
        if (moth.curVars[m] > ub[m]) {
            moth.curVars[m] = ub[m];
        }
    }

    // 更新飞蛾信息
    void updateMoth(Moth moth) {
        double objValue = getObjValue(moth.curVars);
        moth.curObjValue = objValue;
        moth.fit = 1 / objValue;
        if (moth.fit > moth.bestFit) {
            moth.bestFit = moth.fit;
            moth.bestObjValue = moth.curObjValue;
            moth.bestVars = moth.curVars.clone();
        }
    }

    // 获取一个随机生成的飞蛾
    Moth getRandomMoth() {
        double[] vars = new double[varNum];
        for (int j = 0; j < vars.length; j++) {
            vars[j] = lb[j] + random.nextDouble() * (ub[j] - lb[j]);
        }
        double objValue = getObjValue(vars);
        return new Moth(vars.clone(), objValue, 1 / objValue, vars.clone(), objValue, 1 / objValue);
    }

    /**
     * @param vars 自变量数组
     * @return 返回目标函数值
     */
    public double getObjValue(double[] vars) {
        //目标:在变量区间范围最小化 Z = x^2 + y^2 - xy - 10x - 4y +60
        return Math.pow(vars[0], 2) + Math.pow(vars[1], 2) - vars[0] * vars[1] - 10 * vars[0] - 4 * vars[1] + 60;
    }

    // 复制飞蛾
    Moth copyMoth(Moth old) {
        return new Moth(old.curVars.clone(), old.curObjValue, old.fit, old.bestVars.clone(), old.bestObjValue, old.bestFit);
    }

}

可视化代码

import javafx.animation.KeyFrame;
import javafx.animation.Timeline;
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.canvas.Canvas;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.control.Button;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.stage.Stage;
import javafx.util.Duration;

/**
 * @Author:WSKH
 * @ClassName:PlotUtil
 * @ClassType:
 * @Description:
 * @Date:2022/6/6/18:31
 * @Email:1187560563@qq.com
 * @Blog:https://blog.csdn.net/weixin_51545953?type=blog
 */
public class PlotUtil extends Application {

    //当前的时间轴
    private Timeline nowTimeline;
    //绘图位置坐标
    private double[][][] positionArr;

    public static void main(String[] args) {
        launch(args);
    }

    @Override
    public void start(Stage primaryStage) throws Exception {

        // 调用算法获取绘图数据
        MFO_Solve solver = new MFO_Solve();
        solver.solve();
        positionArr = solver.positionArr;

        // 画图
        try {
            BorderPane root = new BorderPane();
            root.setStyle("-fx-padding: 20;");
            Scene scene = new Scene(root, 1600, 900);
            double canvasWid = 800;
            double canvasHei = 800;
            //根据画布大小缩放坐标值
            this.fixPosition(canvasWid - 100, canvasHei - 100);

            //画布和画笔
            HBox canvasHbox = new HBox();
            Canvas canvas = new Canvas();
            canvas.setWidth(canvasWid);
            canvas.setHeight(canvasHei);
            canvasHbox.setPrefWidth(canvasWid);
            canvasHbox.getChildren().add(canvas);
            canvasHbox.setAlignment(Pos.CENTER);
            canvasHbox.setStyle("-fx-spacing: 20;" +
                    "-fx-background-color: #87e775;");
            root.setTop(canvasHbox);
            GraphicsContext paintBrush = canvas.getGraphicsContext2D();

            //启动
            HBox hBox2 = new HBox();
            Button beginButton = new Button("播放迭代过程");
            hBox2.getChildren().add(beginButton);
            root.setBottom(hBox2);
            hBox2.setAlignment(Pos.CENTER);
            //启动仿真以及暂停仿真
            beginButton.addEventHandler(MouseEvent.MOUSE_CLICKED, event -> {
                nowTimeline.play();
            });

            //创建扫描线连接动画
            nowTimeline = new Timeline();
            createAnimation(paintBrush);

            primaryStage.setScene(scene);
            primaryStage.show();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    /**
     * 修正cityPositionArr的坐标,让画出来的点在画布内
     *
     * @param width
     * @param height
     */
    private void fixPosition(double width, double height) {
        double minX = Double.MAX_VALUE;
        double maxX = -Double.MAX_VALUE;
        double minY = Double.MAX_VALUE;
        double maxY = -Double.MAX_VALUE;

        for (int i = 0; i < this.positionArr.length; i++) {
            for (int j = 0; j < this.positionArr[0].length; j++) {
                minX = Math.min(minX, this.positionArr[i][j][0]);
                maxX = Math.max(maxX, this.positionArr[i][j][0]);
                minY = Math.min(minY, this.positionArr[i][j][1]);
                maxY = Math.max(maxY, this.positionArr[i][j][1]);
            }
        }

        double multiple = Math.max((maxX - minX) / width, (maxY - minY) / height);

        //转化为正数数
        for (int i = 0; i < this.positionArr.length; i++) {
            for (int j = 0; j < this.positionArr[0].length; j++) {
                if (minX < 0) {
                    this.positionArr[i][j][0] = this.positionArr[i][j][0] - minX;
                }
                if (minY < 0) {
                    this.positionArr[i][j][1] = this.positionArr[i][j][1] - minY;
                }
            }
        }

        for (int i = 0; i < this.positionArr.length; i++) {
            for (int j = 0; j < this.positionArr[0].length; j++) {
                this.positionArr[i][j][0] = this.positionArr[i][j][0] / multiple;
                this.positionArr[i][j][1] = this.positionArr[i][j][1] / multiple;
            }
        }

    }

    /**
     * 用画笔在画布上画出所有的孔
     * 画第i代的所有粒子
     */
    private void drawAllCircle(GraphicsContext paintBrush, int i) {
        paintBrush.clearRect(0, 0, 2000, 2000);
        paintBrush.setFill(Color.RED);
        for (int j = 0; j < this.positionArr[i].length; j++) {
            drawCircle(paintBrush, i, j);
        }
    }

    /**
     * 用画笔在画布上画出一个孔
     * 画第i代的第j个粒子
     */
    private void drawCircle(GraphicsContext paintBrush, int i, int j) {
        double x = this.positionArr[i][j][0];
        double y = this.positionArr[i][j][1];
        double radius = 2;
        // 圆的直径
        double diameter = radius * 2;
        paintBrush.fillOval(x, y, diameter, diameter);
    }

    /**
     * 创建动画
     */
    private void createAnimation(GraphicsContext paintBrush) {
        for (int i = 0; i < this.positionArr[0].length; i++) {
            int finalI = i;
            KeyFrame keyFrame = new KeyFrame(Duration.seconds(i * 0.05), event -> drawAllCircle(paintBrush, finalI));
            nowTimeline.getKeyFrames().add(keyFrame);
        }
    }

}
相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
目录
相关文章
|
16天前
|
存储 算法 安全
探究‘公司禁用 U 盘’背后的哈希表算法与 Java 实现
在数字化办公时代,信息安全至关重要。许多公司采取“禁用U盘”策略,利用哈希表算法高效管理外接设备的接入权限。哈希表通过哈希函数将设备标识映射到数组索引,快速判断U盘是否授权。例如,公司预先将允许的U盘标识存入哈希表,新设备接入时迅速验证,未授权则禁止传输并报警。这有效防止恶意软件和数据泄露,保障企业信息安全。 代码示例展示了如何用Java实现简单的哈希表,模拟公司U盘管控场景。哈希表不仅用于设备管理,还在文件索引、用户权限等多方面助力信息安全防线的构建,为企业数字化进程保驾护航。
|
10天前
|
SQL Java 数据库连接
如何在 Java 代码中使用 JSqlParser 解析复杂的 SQL 语句?
大家好,我是 V 哥。JSqlParser 是一个用于解析 SQL 语句的 Java 库,可将 SQL 解析为 Java 对象树,支持多种 SQL 类型(如 `SELECT`、`INSERT` 等)。它适用于 SQL 分析、修改、生成和验证等场景。通过 Maven 或 Gradle 安装后,可以方便地在 Java 代码中使用。
120 11
|
14天前
|
JSON Java 数据挖掘
利用 Java 代码获取淘宝关键字 API 接口
在数字化商业时代,精准把握市场动态与消费者需求是企业成功的关键。淘宝作为中国最大的电商平台之一,其海量数据中蕴含丰富的商业洞察。本文介绍如何通过Java代码高效、合规地获取淘宝关键字API接口数据,帮助商家优化产品布局、制定营销策略。主要内容包括: 1. **淘宝关键字API的价值**:洞察用户需求、优化产品标题与详情、制定营销策略。 2. **获取API接口的步骤**:注册账号、申请权限、搭建Java开发环境、编写调用代码、解析响应数据。 3. **注意事项**:遵守法律法规与平台规则,处理API调用限制。 通过这些步骤,商家可以在激烈的市场竞争中脱颖而出。
|
1月前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
59 3
|
1月前
|
前端开发 Java 测试技术
java日常开发中如何写出优雅的好维护的代码
代码可读性太差,实际是给团队后续开发中埋坑,优化在平时,没有那个团队会说我专门给你一个月来优化之前的代码,所以在日常开发中就要多注意可读性问题,不要写出几天之后自己都看不懂的代码。
68 2
|
1月前
|
存储 算法 程序员
C 语言递归算法:以简洁代码驾驭复杂逻辑
C语言递归算法简介:通过简洁的代码实现复杂的逻辑处理,递归函数自我调用解决分层问题,高效而优雅。适用于树形结构遍历、数学计算等领域。
|
1月前
|
Java 编译器 数据库
Java 中的注解(Annotations):代码中的 “元数据” 魔法
Java注解是代码中的“元数据”标签,不直接参与业务逻辑,但在编译或运行时提供重要信息。本文介绍了注解的基础语法、内置注解的应用场景,以及如何自定义注解和结合AOP技术实现方法执行日志记录,展示了注解在提升代码质量、简化开发流程和增强程序功能方面的强大作用。
93 5
|
1月前
|
安全 Java API
Java中的Lambda表达式:简化代码的现代魔法
在Java 8的发布中,Lambda表达式的引入无疑是一场编程范式的革命。它不仅让代码变得更加简洁,还使得函数式编程在Java中成为可能。本文将深入探讨Lambda表达式如何改变我们编写和维护Java代码的方式,以及它是如何提升我们编码效率的。
|
8天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
8天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
102 68