操作系统实验六 信号量的实现和应用(哈工大李治军)(一)

简介: 操作系统实验六 信号量的实现和应用(哈工大李治军)(一)

实验六 信号量的实现和应用


实验目的

加深对进程同步与互斥概念的认识;

掌握信号量的使用,并应用它解决生产者——消费者问题;

掌握信号量的实现原理。


实验内容

本次实验的基本内容是:


Ubuntu 下编写程序,用信号量解决生产者——消费者问题;

在 0.11 中实现信号量,用生产者—消费者程序检验之。

用信号量解决生产者—消费者问题

在 Ubuntu 上编写应用程序“pc.c”,解决经典的生产者—消费者问题,完成下面的功能:


建立一个生产者进程,N 个消费者进程(N>1);

用文件建立一个共享缓冲区;

生产者进程依次向缓冲区写入整数 0,1,2,…,M,M>=500;

消费者进程从缓冲区读数,每次读一个,并将读出的数字从缓冲区删除,然后将本进程 ID 和 + 数字输出到标准输出;

缓冲区同时最多只能保存 10 个数。

一种可能的输出效果是:

10: 0
10: 1
10: 2
10: 3
10: 4
11: 5
11: 6
12: 7
10: 8
12: 9
12: 10
12: 11
12: 12
……
11: 498
11: 499


其中 ID 的顺序会有较大变化,但冒号后的数字一定是从 0 开始递增加一的。


pc.c 中将会用到 sem_open()、sem_close()、sem_wait() 和 sem_post() 等信号量相关的系统调用,请查阅相关文档。


实现信号量

Linux 在 0.11 版还没有实现信号量,Linus 把这件富有挑战的工作留给了你。如果能实现一套山寨版的完全符合 POSIX 规范的信号量,无疑是很有成就感的。但时间暂时不允许我们这么做,所以先弄一套缩水版的类 POSIX 信号量,它的函数原型和标准并不完全相同,而且只包含如下系统调用:

sem_t *sem_open(const char *name, unsigned int value);
int sem_wait(sem_t *sem);
int sem_post(sem_t *sem);
int sem_unlink(const char *name);


sem_open() 的功能是创建一个信号量,或打开一个已经存在的信号量。


sem_t 是信号量类型,根据实现的需要自定义。

name 是信号量的名字。不同的进程可以通过提供同样的 name 而共享同一个信号量。如果该信号量不存在,就创建新的名为 name 的信号量;如果存在,就打开已经存在的名为 name 的信号量。

value 是信号量的初值,仅当新建信号量时,此参数才有效,其余情况下它被忽略。当成功时,返回值是该信号量的唯一标识(比如,在内核的地址、ID 等),由另两个系统调用使用。如失败,返回值是 NULL。

sem_wait() 就是信号量的 P 原子操作。如果继续运行的条件不满足,则令调用进程等待在信号量 sem 上。返回 0 表示成功,返回 -1 表示失败。


sem_post() 就是信号量的 V 原子操作。如果有等待 sem 的进程,它会唤醒其中的一个。返回 0 表示成功,返回 -1 表示失败。


sem_unlink() 的功能是删除名为 name 的信号量。返回 0 表示成功,返回 -1 表示失败。


在 kernel 目录下新建 sem.c 文件实现如上功能。然后将 pc.c 从 Ubuntu 移植到 0.11 下,测试自己实现的信号量。


什么是信号量?

信号量,英文为 semaphore,最早由荷兰科学家、图灵奖获得者 E. W. Dijkstra 设计,任何操作系统教科书的“进程同步”部分都会有详细叙述。


Linux 的信号量秉承 POSIX 规范,用man sem_overview可以查看相关信息。


本次实验涉及到的信号量系统调用包括:sem_open()、sem_wait()、sem_post() 和 sem_unlink()。


生产者—消费者问题


生产者—消费者问题的解法几乎在所有操作系统教科书上都有,其基本结构为:

Producer()
{
    // 生产一个产品 item;
    // 空闲缓存资源
    P(Empty);
    // 互斥信号量
    P(Mutex);
    // 将item放到空闲缓存中;
    V(Mutex);
    // 产品资源
    V(Full);
}
Consumer()
{
    P(Full);
    P(Mutex);
    //从缓存区取出一个赋值给item;
    V(Mutex);
    // 消费产品item;
    V(Empty);
}


显然在演示这一过程时需要创建两类进程,一类执行函数 Producer(),另一类执行函数 Consumer()。


思路

大家可以参考这个演示视频,先总体梳理一遍。如果实验三系统调用学的不错的话,这里的系统调用编写和编译应该是很清晰的。


通俗的讲,在用户程序中想要使用内核态中的系统调用命令,需要在用户态执行对系统调用命令的调用



通过宏展开




由此通过著名的 int 0x80 中断进入内核态

目录
相关文章
|
1天前
|
存储 API 调度
深入理解操作系统:从内核到应用
【6月更文挑战第25天】本文将深入探讨操作系统的内部结构、功能以及它如何与应用程序交互。我们将从内核开始,逐步了解进程管理、内存管理、文件系统等关键组件,并讨论操作系统如何支持多任务处理和并发。最后,我们将探讨操作系统与应用程序之间的接口,以及操作系统如何影响应用程序的性能和稳定性。
|
14天前
|
存储 安全 调度
深入理解操作系统:从基础概念到高级应用
本文将深入探讨操作系统的基本概念、功能和特性,以及其在现代计算环境中的应用。我们将从操作系统的定义和历史开始,然后详细介绍其主要组件和工作原理,包括进程管理、内存管理、文件系统和设备管理等。最后,我们将讨论一些高级主题,如操作系统的安全性、性能优化和虚拟化技术。无论您是计算机科学的学生,还是对操作系统有兴趣的技术人员,这篇文章都将为您提供深入理解和应用操作系统所需的知识和技能。
|
30天前
|
JSON 数据管理 测试技术
自动化测试工具Selenium Grid的深度应用分析深入理解操作系统的内存管理
【5月更文挑战第28天】随着互联网技术的飞速发展,软件测试工作日益复杂化,传统的手工测试已无法满足快速迭代的需求。自动化测试工具Selenium Grid因其分布式执行特性而受到广泛关注。本文旨在深入剖析Selenium Grid的工作原理、配置方法及其在复杂测试场景中的应用优势,为测试工程师提供高效测试解决方案的参考。
|
30天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用深入理解操作系统内存管理:原理与实践
【5月更文挑战第28天】 随着人工智能技术的飞速发展,图像识别作为其重要分支之一,在多个领域展现出了广泛的应用潜力。尤其是在自动驾驶系统中,基于深度学习的图像识别技术已成为实现车辆环境感知和决策的关键。本文将深入探讨深度学习算法在自动驾驶图像识别中的作用,分析其面临的挑战以及未来的发展趋势,并以此为基础,展望该技术对自动驾驶安全性和效率的影响。
|
1月前
|
机器学习/深度学习 监控 调度
深度学习在图像识别中的应用与挑战深入理解操作系统中的进程调度策略
【5月更文挑战第27天】 随着人工智能技术的飞速发展,深度学习已经成为图像识别领域的核心技术。本文将探讨深度学习在图像识别中的应用,以及在实际应用中所面临的挑战。我们将介绍深度学习的基本原理,以及如何将其应用于图像识别任务中。此外,我们还将讨论在实际应用中可能遇到的一些问题,如数据不平衡、模型过拟合等,并提出相应的解决方案。
|
1月前
|
存储 缓存 算法
深入理解操作系统内存管理:分页系统的优势与挑战构建高效Android应用:探究Kotlin协程的优势与实践
【5月更文挑战第27天】 在现代计算机系统中,内存管理是操作系统的核心功能之一。分页系统作为一种内存管理技术,通过将物理内存划分为固定大小的单元——页面,为每个运行的程序提供独立的虚拟地址空间。这种机制不仅提高了内存的使用效率,还为多任务环境提供了必要的隔离性。然而,分页系统的实现也带来了一系列的挑战,包括页面置换算法的选择、内存抖动问题以及TLB(Translation Lookaside Buffer)的管理等。本文旨在探讨分页系统的原理、优势及其面临的挑战,并通过分析现有解决方案,提出可能的改进措施。
|
1月前
|
C++
【操作系统】信号量机制(整型信号量、记录型信号量),用信号量实现进程互斥、同步、前驱关系
【操作系统】信号量机制(整型信号量、记录型信号量),用信号量实现进程互斥、同步、前驱关系
39 6
|
1月前
|
缓存 算法 Java
操作系统(8)---进程的同步与互斥以及信号量机制(万字总结~)(4)
操作系统(8)---进程的同步与互斥以及信号量机制(万字总结~)
64 0
|
1月前
操作系统(8)---进程的同步与互斥以及信号量机制(万字总结~)(3)
操作系统(8)---进程的同步与互斥以及信号量机制(万字总结~)
54 0
|
1月前
|
C++ 调度
操作系统(8)---进程的同步与互斥以及信号量机制(万字总结~)(2)
操作系统(8)---进程的同步与互斥以及信号量机制(万字总结~)
76 0

热门文章

最新文章