优化系列 | 实例解析MySQL性能瓶颈排查定位

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 优化系列 | 实例解析MySQL性能瓶颈排查定位

导读

从一个现场说起,全程解析如何定位性能瓶颈。

排查过程

收到线上某业务后端的MySQL实例负载比较高的告警信息,于是登入服务器检查确认。

1. 首先我们进行OS层面的检查确认

登入服务器后,我们的目的是首先要确认当前到底是哪些进程引起的负载高,以及这些进程卡在什么地方,瓶颈是什么。

通常来说,服务器上最容易成为瓶颈的是磁盘I/O子系统,因为它的读写速度通常是最慢的。即便是现在的PCIe SSD,其随机I/O读写速度也是不如内存来得快。当然了,引起磁盘I/O慢得原因也有多种,需要确认哪种引起的。

第一步,我们一般先看整体负载如何,负载高的话,肯定所有的进程跑起来都慢。

可以执行指令 w 或者 sar -q 1 来查看负载数据,例如(横版查看):

[yejr@imysql.com:~ ]# w
 11:52:58 up 702 days, 56 min,  1 user,  load average: 7.20, 6.70, 6.47
USER     TTY      FROM              LOGIN@   IDLE   JCPU   PCPU WHAT
root     pts/0    1.xx.xx.xx        11:51    0.00s  0.03s  0.00s w

或者 sar -q 的观察结果(横版查看):

[yejr@imysql.com:~ ]# sar -q 1

Linux 2.6.32-431.el6.x86_64 (yejr.imysql.com) 01/13/2016 x86_64 (24 CPU)
02:51:18 PM runq-sz plist-sz ldavg-1 ldavg-5 ldavg-15 blocked
02:51:19 PM 4 2305 6.41 6.98 7.12 3
02:51:20 PM 2 2301 6.41 6.98 7.12 4
02:51:21 PM 0 2300 6.41 6.98 7.12 5
02:51:22 PM 6 2301 6.41 6.98 7.12 8
02:51:23 PM 2 2290 6.41 6.98 7.12 8

load average大意表示当前CPU中有多少任务在排队等待,等待越多说明负载越高,跑数据库的服务器上,一般load值超过5的话,已经算是比较高的了。

引起load高的原因也可能有多种:

  1. 某些进程/服务消耗更多CPU资源(服务响应更多请求或存在某些应用瓶颈);
  2. 发生比较严重的swap(可用物理内存不足);
  3. 发生比较严重的中断(因为SSD或网络的原因发生中断);
  4. 磁盘I/O比较慢(会导致CPU一直等待磁盘I/O请求);

这时我们可以执行下面的命令来判断到底瓶颈在哪个子系统(横版查看):

[yejr@imysql.com:~ ]# top
top - 11:53:04 up 702 days, 56 min, 1 user, load average: 7.18, 6.70, 6.47
Tasks: 576 total, 1 running, 575 sleeping, 0 stopped, 0 zombie
Cpu(s): 7.7%us, 3.4%sy, 0.0%ni, 77.6%id, 11.0%wa, 0.0%hi, 0.3%si, 0.0%st
Mem: 49374024k total, 32018844k used, 17355180k free, 115416k buffers
Swap: 16777208k total, 117612k used, 16659596k free, 5689020k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
14165 mysql 20 0 8822m 3.1g 4672 S 162.3 6.6 89839:59 mysqld
40610 mysql 20 0 25.6g 14g 8336 S 121.7 31.5 282809:08 mysqld
49023 mysql 20 0 16.9g 5.1g 4772 S 4.6 10.8 34940:09 mysqld

很明显是前面两个mysqld进程导致整体负载较高。

而且,从 Cpu(s) 这行的统计结果也能看的出来,%us%wa 的值较高,表示当前比较大的瓶颈可能是在用户进程消耗的CPU以及磁盘I/O等待上

我们先分析下磁盘I/O的情况。

执行 sar -d 确认磁盘I/O是否真的较大(横版查看):

[yejr@imysql.com:~ ]# sar -d 1
Linux 2.6.32-431.el6.x86_64 (yejr.imysql.com) 01/13/2016 x86_64 (24 CPU)
11:54:32 AM dev8-0 5338.00 162784.00 1394.00 30.76 5.24 0.98 0.19 100.00
11:54:33 AM dev8-0 5134.00 148032.00 32365.00 35.14 6.93 1.34 0.19 100.10
11:54:34 AM dev8-0 5233.00 161376.00 996.00 31.03 9.77 1.88 0.19 100.00
11:54:35 AM dev8-0 4566.00 139232.00 1166.00 30.75 5.37 1.18 0.22 100.00
11:54:36 AM dev8-0 4665.00 145920.00 630.00 31.41 5.94 1.27 0.21 100.00
11:54:37 AM dev8-0 4994.00 156544.00 546.00 31.46 7.07 1.42 0.20 100.00

再利用 iotop 确认到底哪些进程消耗的磁盘I/O资源最多(横版查看):

[yejr@imysql.com:~ ]# iotop
Total DISK READ: 60.38 M/s | Total DISK WRITE: 640.34 K/s
TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND
16397 be/4 mysql 8.92 M/s 0.00 B/s 0.00 % 94.77 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
7295 be/4 mysql 10.98 M/s 0.00 B/s 0.00 % 93.59 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
14295 be/4 mysql 10.50 M/s 0.00 B/s 0.00 % 93.57 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
14288 be/4 mysql 14.30 M/s 0.00 B/s 0.00 % 91.86 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
14292 be/4 mysql 14.37 M/s 0.00 B/s 0.00 % 91.23 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320

可以看到,端口号是3320的实例消耗的磁盘I/O资源比较多,那就看看这个实例里都有什么查询在跑吧。

2. MySQL层面检查确认

首先看下当前都有哪些查询在运行(横版查看):

[yejr@imysql.com:~ ]# iotop
Total DISK READ: 60.38 M/s | Total DISK WRITE: 640.34 K/s
TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND
16397 be/4 mysql 8.92 M/s 0.00 B/s 0.00 % 94.77 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
7295 be/4 mysql 10.98 M/s 0.00 B/s 0.00 % 93.59 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
14295 be/4 mysql 10.50 M/s 0.00 B/s 0.00 % 93.57 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
14288 be/4 mysql 14.30 M/s 0.00 B/s 0.00 % 91.86 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
14292 be/4 mysql 14.37 M/s 0.00 B/s 0.00 % 91.23 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320

可以看到有不少慢查询还未完成,从slow query log中也能发现,这类SQL发生的频率很高。

这是一个非常低效的SQL写法,导致需要对整个主键进行扫描,但实际上只需要取得一个最大值而已,从slow query log中可看到:

[yejr@imysql.com(db)]> mysqladmin pr|grep -v Sleep
+----+----+----------+----+-------+-----+--------------+-----------------------------------------------------------------------------------------------+
| Id |User| Host | db |Command|Time | State | Info |
+----+----+----------+----+-------+-----+--------------+-----------------------------------------------------------------------------------------------+
| 25 | x | 10.x:8519 | db | Query | 68 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>404612 order by Fvideoid) t1 |
| 26 | x | 10.x:8520 | db | Query | 65 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>484915 order by Fvideoid) t1 |
| 28 | x | 10.x:8522 | db | Query | 130 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>404641 order by Fvideoid) t1 |
| 27 | x | 10.x:8521 | db | Query | 167 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>324157 order by Fvideoid) t1 |
| 36 | x | 10.x:8727 | db | Query | 174 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>324346 order by Fvideoid) t1 |
+----+----+----------+----+-------+-----+--------------+-----------------------------------------------------------------------------------------------+

每次都要扫描500多万行数据,却只为读取一个最大值,效率非常低。

经过分析,这个SQL稍做简单改造即可在个位数毫秒级内完成,原先则是需要150-180秒才能完成,提升了N次方。

改造的方法是:对查询结果做一次倒序排序,取得第一条记录即可。而原先的做法是对结果正序排序,取最后一条记录,汗啊。。。

写在最后,小结

在这个例子中,产生瓶颈的原因比较好定位,SQL优化也不难,实际线上环境中,通常有以下几种常见的原因导致负载较高:

  1. 一次请求读写的数据量太大,导致磁盘I/O读写值较大,例如一个SQL里要读取或更新几万行数据甚至更多,这种最好是想办法减少一次读写的数据量;
  2. SQL查询中没有适当的索引可以用来完成条件过滤、排序(ORDER BY)、分组(GROUP BY)、数据聚合(MIN/MAX/COUNT/AVG等),添加索引或者进行SQL改写吧;
  3. 瞬间突发有大量请求,这种一般只要能扛过峰值就好,保险起见还是要适当提高服务器的配置,万一峰值抗不过去就可能发生雪崩效应;
  4. 因为某些定时任务引起的负载升高,比如做数据统计分析和备份,这种对CPU、内存、磁盘I/O消耗都很大,最好放在独立的slave服务器上执行;
  5. 服务器自身的节能策略发现负载较低时会让CPU降频,当发现负载升高时再自动升频,但通常不是那么及时,结果导致CPU性能不足,抗不过突发的请求;
  6. 使用raid卡的时候,通常配备BBU(cache模块的备用电池),早期一般采用锂电池技术,需要定期充放电(DELL服务器90天一次,IBM是30天),我们可以通过监控在下一次充放电的时间前在业务低谷时提前对其进行放电,不过新一代服务器大多采用电容式电池,也就不存在这个问题了。
  7. 文件系统采用ext4甚至ext3,而不是xfs,在高I/O压力时,很可能导致%util已经跑到100%了,但iops却无法再提升,换成xfs一般可获得大幅提升;
  8. 内核的io scheduler策略采用cfq而非deadline或noop,可以在线直接调整,也可获得大幅提升。
            </div>
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
12天前
|
监控 关系型数据库 MySQL
MySQL自增ID耗尽应对策略:技术解决方案全解析
在数据库管理中,MySQL的自增ID(AUTO_INCREMENT)属性为表中的每一行提供了一个唯一的标识符。然而,当自增ID达到其最大值时,如何处理这一情况成为了数据库管理员和开发者必须面对的问题。本文将探讨MySQL自增ID耗尽的原因、影响以及有效的应对策略。
42 3
|
13天前
|
存储 关系型数据库 MySQL
MySQL 字段类型深度解析:VARCHAR(50) 与 VARCHAR(500) 的差异
在MySQL数据库中,`VARCHAR`类型是一种非常灵活的字符串存储类型,它允许存储可变长度的字符串。然而,`VARCHAR(50)`和`VARCHAR(500)`之间的差异不仅仅是长度的不同,它们在存储效率、性能和使用场景上也有所不同。本文将深入探讨这两种字段类型的区别及其对数据库设计的影响。
27 2
|
17天前
|
存储 关系型数据库 MySQL
PHP与MySQL动态网站开发深度解析####
本文作为技术性文章,深入探讨了PHP与MySQL结合在动态网站开发中的应用实践,从环境搭建到具体案例实现,旨在为开发者提供一套详尽的实战指南。不同于常规摘要仅概述内容,本文将以“手把手”的教学方式,引导读者逐步构建一个功能完备的动态网站,涵盖前端用户界面设计、后端逻辑处理及数据库高效管理等关键环节,确保读者能够全面掌握PHP与MySQL在动态网站开发中的精髓。 ####
|
25天前
|
存储 关系型数据库 MySQL
MySQL MVCC深度解析:掌握并发控制的艺术
【10月更文挑战第23天】 在数据库领域,MVCC(Multi-Version Concurrency Control,多版本并发控制)是一种重要的并发控制机制,它允许多个事务并发执行而不产生冲突。MySQL作为广泛使用的数据库系统,其InnoDB存储引擎就采用了MVCC来处理事务。本文将深入探讨MySQL中的MVCC机制,帮助你在面试中自信应对相关问题。
82 3
|
25天前
|
缓存 关系型数据库 MySQL
MySQL执行计划深度解析:如何做出最优选择
【10月更文挑战第23天】 在数据库查询性能优化中,执行计划的选择至关重要。MySQL通过查询优化器来生成执行计划,但有时不同的执行计划会导致性能差异。理解如何选择合适的执行计划,以及为什么某些计划更优,对于数据库管理员和开发者来说是一项必备技能。
39 2
|
29天前
|
人工智能 Cloud Native Java
云原生技术深度解析:从IO优化到AI处理
【10月更文挑战第24天】在当今数字化时代,云计算已经成为企业IT架构的核心。云原生作为云计算的最新演进形态,旨在通过一系列先进的技术和实践,帮助企业构建高效、弹性、可观测的应用系统。本文将从IO优化、key问题解决、多线程意义以及AI处理等多个维度,深入探讨云原生技术的内涵与外延,并结合Java和AI技术给出相应的示例。
95 1
|
13天前
|
关系型数据库 MySQL 数据库
【赵渝强老师】启动与关闭MySQL数据库实例
MySQL数据库安装完成后,可以通过命令脚本启动、查看状态、配置开机自启、查看自启列表及关闭数据库。本文提供了详细的操作步骤和示例代码,并附有视频讲解。
|
22天前
|
机器学习/深度学习 Android开发 UED
移动应用与系统:从开发到优化的全面解析
【10月更文挑战第25天】 在数字化时代,移动应用已成为我们生活的重要组成部分。本文将深入探讨移动应用的开发过程、移动操作系统的角色,以及如何对移动应用进行优化以提高用户体验和性能。我们将通过分析具体案例,揭示移动应用成功的关键因素,并提供实用的开发和优化策略。
|
12天前
|
SQL 关系型数据库 MySQL
12 PHP配置数据库MySQL
路老师分享了PHP操作MySQL数据库的方法,包括安装并连接MySQL服务器、选择数据库、执行SQL语句(如插入、更新、删除和查询),以及将结果集返回到数组。通过具体示例代码,详细介绍了每一步的操作流程,帮助读者快速入门PHP与MySQL的交互。
26 1
|
14天前
|
SQL 关系型数据库 MySQL
go语言数据库中mysql驱动安装
【11月更文挑战第2天】
29 4

推荐镜像

更多