【数据结构与算法分析】0基础带你学数据结构与算法分析06--树(TREE)

简介: 笔记

前言


Tree 是一些结点的集合,这个集合可以是空集;若不是空集,则 Tree 是由称为 根 的结点 r 以及零或多个非空的子树 T1,T2,⋯ , 组成,这些子树的根都与 r 有一条有向边 (edge) 连接。这些子树的根被称为根 r 的孩子 (child),而 r 是这些 child 的父亲 (parent)。

2.png



树的属性


根据给出的树的递归定义,可以发现一个树是由 N 个 node 和 N−1 条 edge 的集合。而除 root 外的所有 node 都有一个由其 parent 指向它的 edge。在树中有一些特殊的属性是需要注意的,这里先给出相关概念与示例,如果不是很理解,可以通过结合示例来理解这些概念。


结点的度 (degree)


       一个节点含有的子树的个数称为该节点的度


树的度 (degree of tree)


       一棵树中最大的 node degree 称为树的度


叶结点 (leaf)


       或称终端结点,如果结点满足 degree=0 则该结点为叶结点


分支结点 (branch node)


       或称内部结点 (internal node)、非终端结点,度不为 0 的结点


层次 (level)


       从 root 开始,root 所在的层为第 1 层,root 的 child 为第二层,以此类推


关系


       树就像一本族谱,从 root 开始结点直接有一定的亲缘关系


兄弟 (sibling): 具有相同父节点的节点互为兄弟节点

叔父 (uncle): 父结点的兄弟结点为该结点的叔父结点

堂兄弟: 父结点在同一层的结点互为堂兄弟


路径 (path)



结点 n1,n2,⋯ ,nk 的一个序列,使得对于 1≤i<k 满足 ni 是 ni+1 的 parent,则这个序列被称为从 n1 到结点 nk 的 path。其路径长度 (length) 为路径上的 edge 的数量,即 k−1 。特别地,每个结点到自己的 path lenth 为 0


深度 (depth)


对于结点 ni ,从 root 到 ni 的唯一路径的长度 (Depthroot=0)


高度 (height)


对于结点 ni ,从 ni 到 leaf 的最长路径长度 (Heightleaf=0)


树的高度


或称树的深度,其总是等于根的高度,或最深的结点的深度,可以认为一棵空树的高度为 −1


祖先 (ancestor)


对于结点 ni 与 nj 存在一条 ni 到 nj 的路径,那么称 ni 是 nj 的祖先 (ancestor),而 nj 是 ni 的 后裔 (descendant)


距离 (distance)


对于结点 ni 与 nj ,从最近的公共祖先结点 nk 分别到它们的路径长度之和被称为距离 (distance)。特别地,如果 ni=nk ,则 ni 与 nj 的距离为 ni 到 nj 的路径的长度

3.png

注:


严蔚敏老师的数据结构中,或者往常的实现中,根的高度为 1,而叶的深度也为 1,树的高度一般指其最大的层次,因此认为空树的高度为 0。


树的实现


实现树的一种方法是在每一个结点上,除数据外还需要一些链域来指向该结点的每个子结点,然而由于每个结点的子结点数量是不确定的,我们不能直接建立到各个子结点的直接链接。如果申请一定大小的空间以存放子结点,则可能会造成空间的浪费,或不足。因此我们链表的形式存储子结点,而父结点中只存储第一个子结点的指针,如果该链域为空则意味着该结点是叶结点 (degree=0。每个结点中存在一个指向其下一个兄弟的指针,为遍历父结点的所有孩子提供了方法,当该结点 next_sibling=nullptr 时意味着这是父结点的最后一个子结点。


struct TreeBaseNode {
  TreeBaseNode* first_child;
  TreeBaseNode* next_sibling;
};
template <class Element>
struct TreeNode {
  Element data;
};

如果我们用这个结构实现上述图示的树,可以画一下其表示。

4.png

可以发现,除非该结点是 leaf,否则我们很难判断该结点的 degree。且在计算深度与距离时,要十分小心在兄弟间步进,因为兄弟间步进并不会增加其与 parent 的距离。


树的遍历与应用



观察你系统中的文件系统,回到文件系统的顶层 / (root),并浏览一些目录你会发现, 整个目录结构与 tree 是类似的,我们也常常将其称为目录树。

5.png

这颗目录树稍微有些复杂了,不过问题不大。一般文件系统中采用路径名来访问一个文件,而我们可以像遍历树一样遍历这个文件系统,将每个文件打印出来,并按照层级来缩进文件名称。


深度有限遍历 (DFS)

给出一个代码实现:


void filesystem::list_all(file& f, int depth = 0) const {
  print_name(f, depth);  // 打印文件的名称
  if (is_directory(f)) {
    for (file p : get_file_list(f)) { // 遍历目录中的每个文件
      list_all(p, depth + 1);
    }
  }
}

最终的输出结果可能是:

/
 |--- mnt/
 |--- home/
       |--- GinShio/
 |--- usr
       |--- LICENSE
       |--- lib/
             |--- libQt5Core.so
             |--- X11/
                   |--- display-manager
                   |--- etc/
                   |--- displaymanagers/
                         |--- console
                         |--- lightdm
                         |--- sddm
                         |--- xdm
             |--- libstdc++.so.6
             |--- mozilla/
                   |--- kmozillahelper
       |--- bin/
             |--- latexmk
             |--- pdftk
             |--- zsh
.....
.....


在遍历中,每访问一个结点时,对结点的处理工作总是比其子结点的处理先进行,这种先处理根再处理子结点的策略被称为 前序遍历 (preorder traversal)。而另一种常用的遍历方法是 后序遍历 (postorder traversal),即在结点的所有子结点处理完成后再对其进行处理。无论这两种遍历的哪一个,在遍历这个树时总是可以在 O(N) 的时间复杂度里完成。对于目录的 postorder traversal 留给读者思考并实现。


现在考虑这两种算法有什么共通的特点。有没有发现它们都是在一棵子树上处理完所有结点之后再转移到另一棵子树上,这种一直向着 child 递归,直到全部递归结束时再向 sibling 递归的算法,就被称之为 深度优先搜索 (Depth-first Search, DFS)。由于 DFS 使用递归算法,因此 DFS 总能被改写为 loop,非 tail recursion 的递归有可能需要 stack 的帮助才能改为 loop。



广度优先遍历 (BFS)

请回看 树的实现 一节的图,图中的树如果以一层一层遍历,当一层的所有结点都被遍历完时,再进入更深一层,从这层的第一个结点开始处理。这种遍历方式被称为 广度优先遍历 (Breadth-first Search, BFS) 或者是层序遍历。


相关文章
|
5月前
|
存储 机器学习/深度学习 算法
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty  敏感词
|
5月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
145 17
|
5月前
|
存储 监控 算法
局域网上网记录监控的 C# 基数树算法高效检索方案研究
在企业网络管理与信息安全领域,局域网上网记录监控是维护网络安全、规范网络行为的关键举措。随着企业网络数据量呈指数级增长,如何高效存储和检索上网记录数据成为亟待解决的核心问题。基数树(Trie 树)作为一种独特的数据结构,凭借其在字符串处理方面的卓越性能,为局域网上网记录监控提供了创新的解决方案。本文将深入剖析基数树算法的原理,并通过 C# 语言实现的代码示例,阐述其在局域网上网记录监控场景中的具体应用。
127 7
|
7月前
|
人工智能 算法 语音技术
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
清华大学与腾讯联合推出的Video-T1技术,通过测试时扩展(TTS)和Tree-of-Frames方法,显著提升视频生成的连贯性与文本匹配度,为影视制作、游戏开发等领域带来突破性解决方案。
207 4
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
|
7月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
159 3
 算法系列之数据结构-Huffman树
|
7月前
|
存储 自然语言处理 数据库
【数据结构进阶】AVL树深度剖析 + 实现(附源码)
在深入探讨了AVL树的原理和实现后,我们不难发现,这种数据结构不仅优雅地解决了传统二叉搜索树可能面临的性能退化问题,还通过其独特的平衡机制,确保了在任何情况下都能提供稳定且高效的查找、插入和删除操作。
514 19
|
9月前
|
存储 C++
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
【数据结构——树】哈夫曼树(头歌实践教学平台习题)【合集】目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:任务描述 本关任务:编写一个程序构建哈夫曼树和生成哈夫曼编码。 相关知识 为了完成本关任务,你需要掌握: 1.如何构建哈夫曼树, 2.如何生成哈夫曼编码。 测试说明 平台会对你编写的代码进行测试: 测试输入: 1192677541518462450242195190181174157138124123 (用户分别输入所列单词的频度) 预
196 14
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
|
9月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
186 12
|
9月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
166 10
|
11月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
224 59

热门文章

最新文章