剑指 Offer 34. 二叉树中和为某一值的路径
题目
剑指 Offer 34. 二叉树中和为某一值的路径 难度:medium
给你二叉树的根节点 root
和一个整数目标和 targetSum
,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出:[[5,4,11,2],[5,8,4,5]]
示例 2:
输入: root = [1,2,3], targetSum = 5
输出: []
示例 3:
输入: root = [1,2], targetSum = 0
输出: []
提示:
- 树中节点总数在范围
[0, 5000]
内 -1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
方法一:DFS
思路
我们可以采用深度优先搜索的方式,枚举每一条从根节点到叶子节点的路径。当我们遍历到叶子节点,且此时路径和恰为目标和时,我们就找到了一条满足条件的路径。
解题
Python:
class Solution:
def pathSum(self, root: TreeNode, target: int) -> List[List[int]]:
ret = list()
path = list()
def dfs(root: TreeNode, target: int):
if not root:
return
path.append(root.val)
target -= root.val
if not root.left and not root.right and target == 0:
ret.append(path[:])
dfs(root.left, target)
dfs(root.right, target)
path.pop()
dfs(root, target)
return ret
Java:
class Solution {
List<List<Integer>> ret = new LinkedList<List<Integer>>();
Deque<Integer> path = new LinkedList<Integer>();
public List<List<Integer>> pathSum(TreeNode root, int target) {
dfs(root, target);
return ret;
}
public void dfs(TreeNode root, int target) {
if (root == null) {
return;
}
path.offerLast(root.val);
target -= root.val;
if (root.left == null && root.right == null && target == 0) {
ret.add(new LinkedList<Integer>(path));
}
dfs(root.left, target);
dfs(root.right, target);
path.pollLast();
}
}
方法二:BFS
思路
我们也可以采用广度优先搜索的方式,遍历这棵树。当我们遍历到叶子节点,且此时路径和恰为目标和时,我们就找到了一条满足条件的路径。
为了节省空间,我们使用哈希表记录树中的每一个节点的父节点。每次找到一个满足条件的节点,我们就从该节点出发不断向父节点迭代,即可还原出从根节点到当前节点的路径。
解题
Python:
class Solution:
def pathSum(self, root: TreeNode, target: int) -> List[List[int]]:
ret = list()
parent = collections.defaultdict(lambda: None)
def getPath(node: TreeNode):
tmp = list()
while node:
tmp.append(node.val)
node = parent[node]
ret.append(tmp[::-1])
if not root:
return ret
que_node = collections.deque([root])
que_total = collections.deque([0])
while que_node:
node = que_node.popleft()
rec = que_total.popleft() + node.val
if not node.left and not node.right:
if rec == target:
getPath(node)
else:
if node.left:
parent[node.left] = node
que_node.append(node.left)
que_total.append(rec)
if node.right:
parent[node.right] = node
que_node.append(node.right)
que_total.append(rec)
return ret
Java:
class Solution {
List<List<Integer>> ret = new LinkedList<List<Integer>>();
Map<TreeNode, TreeNode> map = new HashMap<TreeNode, TreeNode>();
public List<List<Integer>> pathSum(TreeNode root, int target) {
if (root == null) {
return ret;
}
Queue<TreeNode> queueNode = new LinkedList<TreeNode>();
Queue<Integer> queueSum = new LinkedList<Integer>();
queueNode.offer(root);
queueSum.offer(0);
while (!queueNode.isEmpty()) {
TreeNode node = queueNode.poll();
int rec = queueSum.poll() + node.val;
if (node.left == null && node.right == null) {
if (rec == target) {
getPath(node);
}
} else {
if (node.left != null) {
map.put(node.left, node);
queueNode.offer(node.left);
queueSum.offer(rec);
}
if (node.right != null) {
map.put(node.right, node);
queueNode.offer(node.right);
queueSum.offer(rec);
}
}
}
return ret;
}
public void getPath(TreeNode node) {
List<Integer> temp = new LinkedList<Integer>();
while (node != null) {
temp.add(node.val);
node = map.get(node);
}
Collections.reverse(temp);
ret.add(new LinkedList<Integer>(temp));
}
}
剑指 Offer 07. 重建二叉树
题目
剑指 Offer 07. 重建二叉树 难度:medium
输入某二叉树的前序遍历和中序遍历的结果,请构建该二叉树并返回其根节点。
假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
示例 1:
Input: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
Output: [3,9,20,null,null,15,7]
示例 2:
Input: preorder = [-1], inorder = [-1]
Output: [-1]
限制:
0 <= 节点个数 <= 5000
方法一:递归
思路
只要我们在中序遍历中定位到根节点,那么我们就可以分别知道左子树和右子树中的节点数目。由于同一颗子树的前序遍历和中序遍历的长度显然是相同的,因此我们就可以对应到前序遍历的结果中,对上述形式中的所有左右括号进行定位。
这样以来,我们就知道了左子树的前序遍历和中序遍历结果,以及右子树的前序遍历和中序遍历结果,我们就可以递归地对构造出左子树和右子树,再将这两颗子树接到根节点的左右位置。
在中序遍历中对根节点进行定位时,一种简单的方法是直接扫描整个中序遍历的结果并找出根节点,但这样做的时间复杂度较高。我们可以考虑使用哈希表来帮助我们快速地定位根节点。对于哈希映射中的每个键值对,键表示一个元素(节点的值),值表示其在中序遍历中的出现位置。在构造二叉树的过程之前,我们可以对中序遍历的列表进行一遍扫描,就可以构造出这个哈希映射。在此后构造二叉树的过程中,我们就只需要 $O(1)$ 的时间对根节点进行定位了。
解题
Python:
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
def myBuildTree(preorder_left: int, preorder_right: int, inorder_left: int, inorder_right: int):
if preorder_left > preorder_right:
return None
# 前序遍历中的第一个节点就是根节点
preorder_root = preorder_left
# 在中序遍历中定位根节点
inorder_root = index[preorder[preorder_root]]
# 先把根节点建立出来
root = TreeNode(preorder[preorder_root])
# 得到左子树中的节点数目
size_left_subtree = inorder_root - inorder_left
# 递归地构造左子树,并连接到根节点
# 先序遍历中「从 左边界+1 开始的 size_left_subtree」个元素就对应了中序遍历中「从 左边界 开始到 根节点定位-1」的元素
root.left = myBuildTree(preorder_left + 1, preorder_left + size_left_subtree, inorder_left, inorder_root - 1)
# 递归地构造右子树,并连接到根节点
# 先序遍历中「从 左边界+1+左子树节点数目 开始到 右边界」的元素就对应了中序遍历中「从 根节点定位+1 到 右边界」的元素
root.right = myBuildTree(preorder_left + size_left_subtree + 1, preorder_right, inorder_root + 1, inorder_right)
return root
n = len(preorder)
# 构造哈希映射,帮助我们快速定位根节点
index = {element: i for i, element in enumerate(inorder)}
return myBuildTree(0, n - 1, 0, n - 1)
Java:
class Solution {
private Map<Integer, Integer> indexMap;
public TreeNode myBuildTree(int[] preorder, int[] inorder, int preorder_left, int preorder_right, int inorder_left, int inorder_right) {
if (preorder_left > preorder_right) {
return null;
}
// 前序遍历中的第一个节点就是根节点
int preorder_root = preorder_left;
// 在中序遍历中定位根节点
int inorder_root = indexMap.get(preorder[preorder_root]);
// 先把根节点建立出来
TreeNode root = new TreeNode(preorder[preorder_root]);
// 得到左子树中的节点数目
int size_left_subtree = inorder_root - inorder_left;
// 递归地构造左子树,并连接到根节点
// 先序遍历中「从 左边界+1 开始的 size_left_subtree」个元素就对应了中序遍历中「从 左边界 开始到 根节点定位-1」的元素
root.left = myBuildTree(preorder, inorder, preorder_left + 1, preorder_left + size_left_subtree, inorder_left, inorder_root - 1);
// 递归地构造右子树,并连接到根节点
// 先序遍历中「从 左边界+1+左子树节点数目 开始到 右边界」的元素就对应了中序遍历中「从 根节点定位+1 到 右边界」的元素
root.right = myBuildTree(preorder, inorder, preorder_left + size_left_subtree + 1, preorder_right, inorder_root + 1, inorder_right);
return root;
}
public TreeNode buildTree(int[] preorder, int[] inorder) {
int n = preorder.length;
// 构造哈希映射,帮助我们快速定位根节点
indexMap = new HashMap<Integer, Integer>();
for (int i = 0; i < n; i++) {
indexMap.put(inorder[i], i);
}
return myBuildTree(preorder, inorder, 0, n - 1, 0, n - 1);
}
}
后记
📝 上篇精讲: 【算法题解】 Day29 搜索与回溯
💖 我是 𝓼𝓲𝓭𝓲𝓸𝓽,期待你的关注;
👍 创作不易,请多多支持;
🔥 系列专栏: 算法题解