《机器人操作系统ROS原理与应用》——导读

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
资源编排,不限时长
简介: 随着2013年大数据元年的开启,各行各业都已经将大数据视为推动企业发展、推进行业进步、加快产业升级、促进民生繁荣、巩固社会安全甚至提升国家竞争力的核心武器。从个性化推荐、关联销售到精准营销,从云平台、云服务、云计算到大数据产业链,从百度迁徙、高考预测到冬季流感预测,从机器学习、图像识别到智能交通,从奥巴马总统竞选到美国中央情报局反恐,从美国的大数据研究和发展计划到中国的促进大数据发展行动纲要等一系列事实说明了大数据正受到来自政治、经济、社会、文化、军事等各个领域的广泛关注,并越来越彰显其巨大价值。


前  言

为什么要写这本书
随着2013年大数据元年的开启,各行各业都已经将大数据视为推动企业发展、推进行业进步、加快产业升级、促进民生繁荣、巩固社会安全甚至提升国家竞争力的核心武器。从个性化推荐、关联销售到精准营销,从云平台、云服务、云计算到大数据产业链,从百度迁徙、高考预测到冬季流感预测,从机器学习、图像识别到智能交通,从奥巴马总统竞选到美国中央情报局反恐,从美国的大数据研究和发展计划到中国的促进大数据发展行动纲要等一系列事实说明了大数据正受到来自政治、经济、社会、文化、军事等各个领域的广泛关注,并越来越彰显其巨大价值。
大数据不仅是一个技术名词,更是当下企业资产、核心竞争力、完整产业链和先进生产力的代名词。因此,大数据应该是作为一个整合概念和体系被认知,而非独立的方法论、技术论甚至应用论。处于飞速变革时代的中国,在大数据产业链各个环节的企事业单位受限于自身产业属性、盈利模式、利益趋向、认知、能力等,无法完整地展示出大数据的知识图谱与价值图谱。
纵观当下整个大数据认知取向,大致有三类基本认知点:
第一类是大数据知识论,这种认知以大数据方法、理论、知识的研究和推导为聚焦点,通过深度学习,归纳、总结出大数据知识体系。这是典型的学院派,优势是对基础理论研究非常透彻并且具备深厚的理论基础,不足之处是缺乏对产业、学术、应用的结合,更缺少真正能落地的应用案例。
第二类是大数据技术论,这种认知以大数据技术为聚焦点,落脚于大数据的硬件、服务、架构、开发、计算、算法等具体实施层面。诚然,大数据技术是大数据实施的核心,也是带来技术变革和生产力突破的关键,但只有技术而缺乏正确的方向以及有价值的应用引导,技术便无法发挥作用,更无法转化为经济价值、社会价值和政治价值。
第三类是大数据应用论,这种认知以大数据的场景化为聚焦点,通过对历史、现在、未来的变革、创新和实践的总结和构想,营造出大数据的丰富应用场景和能力空间。这是一种典型的以应用为驱动的认知理论,通过落地案例驱动技术来表现大数据的巨大价值。但这种应用论过于专注场景化包装,更强调落地而忽视技术的巨大潜力和推动作用,更无法体现出大数据作为企业资产、技术竞争力等非直接利润表现的价值因素。
本书的几位联合作者彼此是共事多年的朋友,各自负责大数据工作中的不同环节。大家的工作和知识有交集更有互补,因此,我们认为只有依靠这种“知识合并”和“知识互补”的关系才能够呈现出大数据的全貌,这也是撰写本书的出发点之一。
当前,市场上有非常多关于大数据的书籍,但能从整体性、全局性、安全性、价值性、技术性、体系性等方面完整考虑的书非常少。我们希望通过本书让读者认识到大数据不仅仅是数据、技术、架构、应用,更是结合了商业模式、战略定位、信息安全、单位协同、组织保障、实施选型的完整体系。
几位联合作者对于本书内容的贡献如下:吕兆星撰写了技术的架构部分,包括第4章、第5章、第6章;郑传峰撰写了战略和应用的部分,包括第1章、第2章、第9章;宋天龙撰写了数据和价值评估的部分,包括第3章、第8章、第10章、第11章、第12章、第13章;杨晓鹏撰写了技术开发的部分中第7章的全部内容。

目  录

前言
第1章 企业大数据战略定位
1.1 宏观
1.2 微观
1.2.1 资源协同
1.2.2 战略定位
1.2.3 启动契机
1.2.4 大数据历程
1.3 本章小结

第2章 企业大数据职能规划
2.1 大数据组织架构体系
2.1.1 大数据部门在企业中的角色
2.1.2 常见的大数据职能及职责
2.2 大数据职位构建体系
2.2.1 基础平台类
2.2.2 数据管理类
2.2.3 技术研发类
2.2.4 产品设计类
2.2.5 数据挖掘类
2.2.6 数据分析类
2.3 大数据制度和流程规范
2.3.1 制度和流程规范意义
2.3.2 制度和流程规范内容
2.3.3 制度和流程规范模板
2.4 本章小结

第3章 企业大数据解决方案
3.1 企业大数据解决方案实现方式
3.1.1 独立研发
3.1.2 第三方解决方案
3.1.3 联合开发
3.2 如何选择解决方案
3.2.1 外部环境分析
3.2.2 内部环境分析
3.2.3 需求规划分析
3.2.4 解决方案特性分析
3.2.5 解决方案费用评估
3.3 本章小结

第4章 企业大数据自主实施思路
4.1 制定规划原则
4.1.1 价值性
4.1.2 实时性
4.1.3 高效性
4.1.4 安全性
4.1.5 延展性
4.1.6 全局性
4.2 制定目标蓝图
4.3 制定建设目标
4.4 明确组织规划
4.4.1 组织结构设计的作用
4.4.2 组织结构设立的导向
4.4.3 组织结构的最终设立
4.5 设计技术方案
4.5.1 大数据系统建设方案
4.5.2 大数据系统与传统BI的融合方案
4.6 制定人才规划
4.6.1 指导思想
4.6.2 规划原则
4.6.3 核心内容
4.7 投入产出评估
4.7.1 数据投入与产出的内涵
4.7.2 数据投入与产出的特征
4.7.3 数据投入与产出的管理
4.8 数据风险管理
4.8.1 数据风险管理的概念
4.8.2 数据风险管理的类型
4.8.3 数据风险管理的原则
4.8.4 数据风险管理与控制
4.9 本章小结
第5章 大数据技术介绍
5.1 核心技术
5.1.1 Hadoop生态
5.1.2 NoSQL
5.1.3 实时计算
5.1.4 全文检索
5.2 相关技术
5.2.1 数据可视化
5.2.2 数据缓存
5.2.3 中间件
5.2.4 关系型数据库
5.2.5 数据ETL
5.3 大数据算法库
5.4 本章小结
第6章 大数据架构设计
6.1 大数据架构设计原则
6.2 大数据核心架构要素
6.3 大数据架构设计模式
6.4 本章小结
第7章 大数据技术开发
7.1 数据采集
7.1.1 批量采集
7.1.2 增量采集
7.2 数据存储
7.2.1 HDFS文件存储引擎
7.2.2 Hive数据存储引擎
7.2.3 HBase列式存储引擎
7.2.4 MySQL关系型数据存储引擎
7.3 多维计算
7.4 功能服务
7.5 平台管理
7.5.1 监控管理
7.5.2 调度管理
7.5.3 权限管理
7.6 应用域
7.7 本章小结
第8章 大数据工作流
8.1 数据源
8.1.1 日志/文件
8.1.2 数据库
8.1.3 网络爬虫
8.1.4 第三方API/合作
8.2 数据处理
8.2.1 数据质量校验
8.2.2 清洗转换
8.2.3 质量提升
8.2.4 数据脱敏
8.2.5 集成整合
8.3 数据存储
8.3.1 关系型数据库
8.3.2 分布式文件系统
8.4 数据计算
8.4.1 三种数据计算时效性
8.4.2 结构化数据计算
8.4.3 半/非结构化数据计算
8.4.4 深度挖掘学习
8.5 数据应用
8.5.1 辅助决策
8.5.2 数据驱动
8.6 数据质量管理
8.6.1 数据质量建设的内涵
8.6.2 影响数据质量的常见因素
8.6.3 数据质量建设的框架
8.7 本章小结
第9章 企业大数据业务应用
9.1 大数据应用场景概述
9.1.1 场景商业目的分析
9.1.2 场景数据来源分析
9.1.3 场景数据难易分析
9.1.4 场景应用举例
9.2 用户画像
9.2.1 业务应用背景
9.2.2 主要实现过程
9.2.3 关键应用场景
9.2.4 应用价值提炼
9.2.5 场景总结回顾
9.3 个性化营销
9.3.1 业务应用背景
9.3.2 主要实现过程
9.3.3 关键应用场景
9.3.4 应用价值提炼
9.3.5 场景总结回顾
9.4 精准广告
9.4.1 业务应用背景
9.4.2 主要实现过程
9.4.3 关键应用场景
9.4.4 应用价值提炼
9.4.5 场景总结回顾
9.5 征信
9.5.1 应用场景背景
9.5.2 主要实现过程
9.5.3 主要应用场景
9.5.4 应用价值提炼
9.5.5 场景总结回顾
9.6 本章小结

相关实践学习
使用ROS创建VPC和VSwitch
本场景主要介绍如何利用阿里云资源编排服务,定义资源编排模板,实现自动化创建阿里云专有网络和交换机。
阿里云资源编排ROS使用教程
资源编排(Resource Orchestration)是一种简单易用的云计算资源管理和自动化运维服务。用户通过模板描述多个云计算资源的依赖关系、配置等,并自动完成所有资源的创建和配置,以达到自动化部署、运维等目的。编排模板同时也是一种标准化的资源和应用交付方式,并且可以随时编辑修改,使基础设施即代码(Infrastructure as Code)成为可能。 产品详情:https://www.aliyun.com/product/ros/
相关文章
|
2月前
|
存储 安全 Shell
深入浅出操作系统:从原理到实践
【9月更文挑战第21天】在数字时代的浪潮中,操作系统扮演着至关重要的角色。本文将深入探究操作系统的奥秘,从其基本概念和核心原理出发,逐步引导读者理解操作系统的工作机制。我们将通过生动的例子和实用的代码片段,揭示操作系统如何管理计算机硬件资源、提供用户接口以及确保系统安全与性能优化。无论你是初学者还是有一定基础的开发者,这篇文章都将为你打开一扇通往操作系统深层世界的大门。准备好跟随我们的脚步,一起探索这个让计算机变得生动起来的神奇软件吧!
67 8
|
23天前
|
Ubuntu 机器人 Linux
|
27天前
|
传感器 机器学习/深度学习 人工智能
仿生机器人:自然界灵感的工程应用
【10月更文挑战第14天】仿生机器人作为自然界灵感与工程技术的完美结合,正逐步改变着我们的生活和工作方式。通过深入了解其设计原理、关键技术、应用领域以及未来的发展趋势,我们可以更加清晰地看到仿生机器人在推动科技创新和社会发展中的重要作用。让我们共同期待仿生机器人在未来带来的更多惊喜和变革!
|
9天前
|
安全 算法 Unix
深入浅出操作系统:从基础概念到实践应用
【10月更文挑战第22天】本文旨在以浅显易懂的语言,为读者揭开操作系统的神秘面纱。我们将从操作系统的基本概念出发,逐步深入其核心功能与设计哲学,并通过具体代码示例,展示操作系统如何在实际中发挥作用。无论你是计算机科学的学生,还是对技术有浓厚兴趣的爱好者,这篇文章都将为你提供一次轻松愉快的操作系统之旅。
22 4
|
10天前
|
机器学习/深度学习 人工智能 自动驾驶
2024.10|AI/大模型在机器人/自动驾驶/智能驾舱领域的最新应用和深度洞察
本文介绍了AI和大模型在机器人、自动驾驶和智能座舱领域的最新应用和技术进展。涵盖多模态大语言模型在机器人控制中的应用、移动机器人(AMRs)的规模化部署、协作机器人的智能与安全性提升、AR/VR技术在机器人培训中的应用、数字孪生技术的优化作用、Rust语言在机器人编程中的崛起,以及大模型在自动驾驶中的核心地位、端到端自动驾驶解决方案、全球自动驾驶的前沿进展、智能座舱的核心技术演变和未来发展趋势。
30 2
|
2月前
|
移动开发 Android开发 数据安全/隐私保护
移动应用与系统的技术演进:从开发到操作系统的全景解析随着智能手机和平板电脑的普及,移动应用(App)已成为人们日常生活中不可或缺的一部分。无论是社交、娱乐、购物还是办公,移动应用都扮演着重要的角色。而支撑这些应用运行的,正是功能强大且复杂的移动操作系统。本文将深入探讨移动应用的开发过程及其背后的操作系统机制,揭示这一领域的技术演进。
本文旨在提供关于移动应用与系统技术的全面概述,涵盖移动应用的开发生命周期、主要移动操作系统的特点以及它们之间的竞争关系。我们将探讨如何高效地开发移动应用,并分析iOS和Android两大主流操作系统的技术优势与局限。同时,本文还将讨论跨平台解决方案的兴起及其对移动开发领域的影响。通过这篇技术性文章,读者将获得对移动应用开发及操作系统深层理解的钥匙。
|
2月前
|
安全 搜索推荐 机器人
纳米技术与医疗:纳米机器人的临床应用前景
【9月更文挑战第28天】纳米机器人作为纳米技术在医疗领域的重要应用,正逐步改变着传统医疗的面貌。它们在药物输送、癌症治疗、手术辅助和疾病诊断等方面展现出广阔的应用前景。随着科学技术的不断进步和纳米技术的不断成熟,我们有理由相信,纳米机器人将成为医疗领域的一个重要且不可或缺的组成部分,为人类的健康事业做出更大的贡献。同时,我们也应关注纳米技术的安全性和可靠性问题,确保其在医疗应用中的安全和有效。
|
2月前
|
Unix Linux Windows
操作系统的演变与基本原理
本文旨在深入探讨操作系统的历史演变过程及其背后的设计原理。通过对不同时期典型操作系统的分析,本文揭示了它们如何响应技术挑战和社会需求的变化。此外,文章还将阐述操作系统的核心功能和关键技术,如进程管理、内存管理和文件系统,并探讨这些技术如何影响计算机系统的性能和可靠性。通过综合历史案例和技术分析,本文希望为读者提供一个全面而深入的理解,为什么操作系统是现代计算不可或缺的基石。
44 1
|
23天前
|
传感器 数据可视化 机器人
【ROS速成】半小时入门机器人ROS系统简明教程之可视化系统(三)
半小时入门机器人ROS系统简明教程之可视化系统
|
23天前
|
机器人
【ROS速成】半小时入门机器人ROS系统简明教程之安装测速(二)
半小时入门机器人ROS系统简明教程之安装测速

推荐镜像

更多