《数据驱动安全:数据安全分析、可视化和仪表盘》一2.2.1 理解Python数据分析和可视化生态系统

本文涉及的产品
数据安全中心,免费版
简介: 本节书摘来华章计算机《数据驱动安全:数据安全分析、可视化和仪表盘》一书中的第2章 ,第2.2.1节,[美]杰·雅克布(Jay Jacobs)鲍布·鲁迪斯(Bob Rudis) 著 薛杰 王占一 张卓 胡开勇 蒋梦飏 赵爽 译, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。

本节书摘来华章计算机《数据驱动安全:数据安全分析、可视化和仪表盘》一书中的第2章 ,第2.2.1节,[美]杰·雅克布(Jay Jacobs)鲍布·鲁迪斯(Bob Rudis) 著 薛杰 王占一 张卓 胡开勇 蒋梦飏 赵爽 译, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。
2.2.1 理解Python数据分析和可视化生态系统
虽然Python有很多可用的库,但是仅有少数库在处理数据方面很出色,而我们仍旧称这些库是一个生态系统,是因为每一个库的开发和支持来自不同的组织、社区或者个人,他们互相合作,却组织松散。


image

如下是一些几乎每一个项目都需要的库:
Numpy(www.numpy.org/),可以为通用数据创造一个多维容器,支持对数据的多种操作,生成随机数。它也能够“广播”对于Python对象的操作,使其代码更简洁和高效。
SciPy库(www.scipy.org/scipylib/index.html),Numpy的上层封装,便捷的面向数组操作,能够将Numpy广播操作扩展到Python语言中的其他类型的数据元素。另外它还附带统计相关的操作。
Maplotlib(http://matplotlib.org/),一个Python强力的通用库使你的数据转化为产品级的图像。
pandas(http://pandas.pydata.org),该库提供了更高的性能、易用的数据结构和数据分析工具;pandas将Data.Frame类型引入Python的命名空间里,关于这个详细的情况我们会在2.3节讨论。虽然这样会让那些Python的死忠阿谀pandas,但是本质上来看,Python更像R语言,会使我们更简单地在两者间切换。
这些模块,结合IPython,有时会被SciPy栈的核心组件引用(自从它包含了SciPy库以后,这有点费解)。你可以从www.scipy.org/获取更多关于栈的信息。


image


当你用你自己方法采用此生态系统时,你会发现如下代码:
image


image

import段的代码会载入库里的函数和变量,使其名称和功能性在当前Python工作会话里生效,as组件能使模块里的变量、函数和对象能简单地被引用。
假如你的许多程序组件,都要引用每一个Scipy程序包里的基本常规模块,你可以创建一个文本作为基本模板,包含这些imports和其他(以后)能重复使用的代码来节省打字的时间。
你将来当然会使用软件包来连接数据库、读取文件、执行一些功能,你可以花一些时间在Python Package Index(PyPI)上细读所有灵巧的模块(https://pypi.python.org/pypi),但如果它是和SciPy栈有联系的,它将会成为你数据科学之旅上一个常规的老伙计。
Python的“难点”
Python有两个特性容易让新手受挫。第一个“难点”是空白缩进,空格在Python代码里是非常重要的。对于代码段,没有{}或begin/end来标记开始和结束。你必须保持一致的缩进来区分一起执行的代码段,不一致的缩进会导致解释器输出错误信息,程序代码出现异常。现在大部分文本编辑器或者IDE都可以配置提示功能。
第二个“难点”是在使用变量前缺少声明,将一个变量breaches初始化为某个值,不经意间引用该变量,breaches在解释器里不会出错,但是输出的结果却不符合预期。

Canpy的包管理器(http://docs.enthought.com/canopy/quick-start/package_ manager.html)易于进行Python核心安装和相关的模块的实时更新。但是假如你选择手动安装,你需要依赖操作系统的包管理器来安装的Python解释器。升级独立的附加模块可以使用如下python代码完成:

image

关于Python版本
本书的例子基于Python2.7,在编写本书时,Canpy依然使用Python2.7。现在Python有两个主要的版本,2.7.x和3.3.x,Python 3和Python2.7对默认行为做了很多改变,许多包也完成了更新以便与新版本兼容。但是仍旧有许多包只兼容Python2.7,所以稳定性和广泛性使得Python2.7版本成为了数据分析的好选择。
对于Python2.7和Python3.3之间的改变可以参考《What抯 New In Python 3.0》(http://docs.python.org/3/whatsnew/3.0.html)。

相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
51 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
18天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
97 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
27天前
|
缓存 Rust 算法
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
84 35
|
28天前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
251 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
1月前
|
数据采集 缓存 API
python爬取Boss直聘,分析北京招聘市场
本文介绍了如何使用Python爬虫技术从Boss直聘平台上获取深圳地区的招聘数据,并进行数据分析,以帮助求职者更好地了解市场动态和职位需求。
|
1月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
75 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
64 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
1月前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
80 37
Python时间序列分析工具Aeon使用指南
|
1月前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习果蔬识别系统实现
本项目基于Python和TensorFlow,使用ResNet卷积神经网络模型,对12种常见果蔬(如土豆、苹果等)的图像数据集进行训练,构建了一个高精度的果蔬识别系统。系统通过Django框架搭建Web端可视化界面,用户可上传图片并自动识别果蔬种类。该项目旨在提高农业生产效率,广泛应用于食品安全、智能农业等领域。CNN凭借其强大的特征提取能力,在图像分类任务中表现出色,为实现高效的自动化果蔬识别提供了技术支持。
基于Python深度学习果蔬识别系统实现
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
135 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法

热门文章

最新文章

推荐镜像

更多