蓝桥杯之算法模板题 Python版(下)

简介: 蓝桥杯之算法模板题 Python版(下)

一般情形


一般情形下的必胜策略与两堆的情形基本一致:若物品堆的尼姆和为0,则后手方有必胜策略,否则先手方有必胜策略。必胜策略的构造基于下面的定理:


在尼姆和为0时,无论如何拿取物品,拿取之后物品堆的尼姆和一定不为0;

在尼姆和不为0时,总存在一种拿取物品的方式,使得拿取之后物品堆的尼姆和为0。

我们先说明必胜策略的构造方式


若物品堆的尼姆和为0,则无论先手方如何拿取,操作之后物品堆的尼姆和一定不为0,先手方总是不能将物品拿完。后手方总是可以选择拿取方式使得物品堆的尼姆和再次为0,同时物品的数量严格减小,这样操作下去,有限多轮之后即可使得后手方拿取物品后所有物品均被拿取,即后手方有必胜策略。

若物品堆的尼姆和不为0,则先手方总可以选择拿取方式使得拿取之后物品堆的尼姆和为0,且处于后手方的位置。由上述讨论可知,先手方有必胜策略。

'''
https://www.lanqiao.cn/problems/1218/learning/
难度: 简单   标签: nim博弈
'''
import os
import sys
t = int(input())
for _ in range(t):
    n = int(input())
    ans = 0
    a = list(map(int, input().split()))
    for i in range(n):
        ans ^= a[i]
    if ans!=0:
       print('NO')
    else:
       print('YES')

变体 反nim博弈


如果将规则改为拿到最后一个物品者败,可得到尼姆博弈的一种变体。此时我们有下面的结论:


若尼姆和为0且所有堆中仅有1个物品,则先手方有必胜策略;

若尼姆和不为0且至少有一堆物品数量大于1,则先手方有必胜策略;

否则后手方有必胜策略。

具体策略分析如下:


A. 假定尼姆和为0且所有堆中仅有1个物品,那么一定有偶数堆物品,否则尼姆和不为0。实际上此时双方均没有选择,只能每次拿走一堆物品,最终先手方拿走倒数第二堆物品,迫使后手方拿走最后一堆物品,输掉博弈。故先手方必胜。


经过相似的分析我们可以得出,若所有堆中仅有1个物品,且共有奇数堆物品,那么后手方必胜。


B. 假定尼姆和不为0且至少有一堆物品数量大于1,此时分为两种情况讨论:


B.1 只有一堆物品的数量大于1:


B.1.1此时若共有偶数个物品堆,则先手方只需要将物品数量大于1的这一堆全部拿走,就将情况转换为A中所有堆中仅有1个物品,且共有奇数堆物品并处于后手方;


B.1.2此时若共有奇数个物品堆,则先手方只需要使得物品数量大于1的这一堆物品拿取之后只剩1个物品,就将情况转换为A中所有堆中仅有1个物品,且共有奇数堆物品并处于后手方;


综合以上两点,此时先手方必胜。


B.2 至少有2堆物品的数量大于1:


此时先手方只需要将尼姆和变为0即可,由上面的讨论我们知道这样的拿取方式一定是存在的。并且拿完之后一定还至少有2堆物品的数量大于1,这是因为假设拿完之后只有第i堆物品数量大于1,不妨设其二进制表示的中最左侧的1在2d这一位上,那么物品堆的尼姆和中2d这一位上一定是1,因为只有的二进制表示中这一位是1,其他物品堆数量的二进制表示这一位上都是0,而


741ded68d4624bb7b646fb90e4aa8478.png


,从而尼姆和不为0,但这与尼姆和为0矛盾。故拿完之后一定还至少有2堆物品的数量大于1。由于物品数量严格减少,如此操作下去,在有限轮之后一定会遇到B.1中的情形,从而先手方必胜。

所以就是两种情况先手必胜,除此之外都是后手必胜


石子个数全部为1 & s u m = = 0

至少有一堆石子个数大于1  & s u m ≠ 0

"""
https://www.lanqiao.cn/problems/1219/learning/
难度: 简单   标签: 反nim博弈
"""
t = int(input())
for _ in range(t):
    n = int(input())
    a = list(map(int,input().split()))
    flag = True
    ans = 0
    cnt = 0
    for x in a:
        if x > 1:
            flag = False
        ans = ans^x
    if flag:
        if ans == 0:
            print('NO') # ans = 0,nim和为0,也就说明是偶数,这时候先手必胜
        else:
            print('YES')
    else:
        if ans != 0: # 至少有一堆>1,并且nim不为0,先手胜
            print('NO')
        else:
            print('YES')

快速幂

'''
https://www.lanqiao.cn/problems/1181/learning/
难度: 简单   标签: 快速幂
'''
import os
import sys
# 请在此输入您的代码
def quickpow(n,m,p):
    res = 1
    while m:
        if m & 1:
            res = (res * n)%p
        n = (n*n)%p
        m = m>>1
    return res
t = int(input())
for i in range(t):
    n, m, p = map(int,input().split())
    print(quickpow(n,m,p))

矩阵快速幂

'''
https://www.lanqiao.cn/problems/1180/learning/
难度: 简单   标签: 矩阵快速幂
'''
# 请在此输入您的代码
def multi(X,Y):
    n,m,k = len(X),len(X[0]),len(Y[0])
    res =[[0]*k for _ in range(n)]
    for i in range(n):
      for j in range(k):
        ans = 0
        for x in range(m):
          ans += X[i][x]*Y[x][j]
        res[i][j] = ans
    return res
def fastpow(X,m):
    res = [[1, 0], [0, 1]]
    while m:
        if m&1:
            res = multi(res,X)
        X = multi(X,X)
        m = m>>1
    return res
t = int(input())
q = [[1,1],[1,0]]
for _ in range(t):
    n = int(input())
    res = fastpow(q,n-1)
    res = res[0][0]
    print(res)


最短路径问题

Floyd算法

'''
https://www.lanqiao.cn/problems/1121/learning/
难度: 简单   标签: Floyd
'''
n,m,q = map(int,input().split())
MAP = [[float('inf')]*(n+1) for _ in range(n+1)]
for i in range(m):
    u,v,w = map(int,input().split())
    MAP[u][v] = w
def floyd(MAP):
    for k in range(1,n+1):
        for i in range(1,n+1):
            for j in range(1,n+1):
                if MAP[i][j] > MAP[i][k] + MAP[k][j]:
                    MAP[i][j] = MAP[i][k] + MAP[k][j]
floyd(MAP)
for _ in range(q):
    st,ed = map(int,input().split())
    res = MAP[st][ed]
    if res != float('inf'):
        print(res)
    else:
        print(-1)
'''
https://www.lanqiao.cn/problems/1122/learning/
难度: 简单   标签: Dijkstra
'''
# floyd算法
n,m = map(int,input().split())
p = [[float('inf')]*(n+1) for _ in range(n+1)]
for _ in range(m):
    u,v,w = map(int,input().split())
    p[u][v] = w
def floyd():
    for k in range(1,n+1):
        for i in range(1,n+1):
            for j in range(1,n+1):
                if p[i][j] > p[i][k] + p[k][j]:
                    p[i][j] = p[i][k] + p[k][j]
    print('0',end = ' ')
    for i in range(2,n+1):
        if p[1][i] != float('inf'):
            print(p[1][i],end = ' ')
        else:
            print(-1,end = ' ')

Dijkstra算法

'''
https://www.lanqiao.cn/problems/1122/learning/
难度: 简单   标签: Dijkstra
'''
import os
import sys
import functools
n,m = map(int,input().split())
INF = float('inf')
graph = [[INF] * (n) for _ in range(n)]
for _ in range(m):
    u,v,w = map(int,input().split())
    graph[u-1][v-1] = w 
def djs(start):
    visited = [0]*n
    dist = [INF]*n
    dist[start - 1] = 0
    for i in range(n):
        # 找到未标记最近的点
        x = -1
        for y,u in enumerate(visited):
            if not u and (x == -1 or dist[x] > dist[y]):
                x = y
        visited[x] = 1
        for y,w in enumerate(graph[x]):
            dist[y] = min(dist[y],dist[x] + w)
    print(" ".join(map(str,dist)))
djs(1)

差分

# https://www.lanqiao.cn/problems/1276/learning/
# 难度: 简单   标签: 差分
n,q = map(int,input().split())
a = [0]+list(map(int,input().split()))
b = [0]*(n+2)
for i in range(1,n+1):
    b[i] = a[i] - a[i-1]
for i in range(q):
    l,r,x = map(int,input().split())
    b[l] += x
    b[r+1] -= x
for i in range(1,n+1):
    a[i] = b[i] + a[i-1]
    if a[i] <= 0:
        print(0,end =' ')
    else:
        print(a[i],end = ' ')

计算几何基础

两线段相交

'''
https://www.lanqiao.cn/problems/1287/learning/
难度: 简单   标签: 计算几何基础
'''
import os
import sys
# 请在此输入您的代码
#Python3.6
class point(): #定义类
    def __init__(self,x,y):
        self.x=x
        self.y=y   
def cross(p1,p2,p3):#跨立实验
    x1=p2.x-p1.x
    y1=p2.y-p1.y
    x2=p3.x-p1.x
    y2=p3.y-p1.y
    return x1*y2-x2*y1     
def IsIntersec(p1,p2,p3,p4): #判断两线段是否相交
    #快速排斥,以l1、l2为对角线的矩形必相交,否则两线段不相交
    if(max(p1.x,p2.x)>=min(p3.x,p4.x)    #矩形1最右端大于矩形2最左端
    and max(p3.x,p4.x)>=min(p1.x,p2.x)   #矩形2最右端大于矩形最左端
    and max(p1.y,p2.y)>=min(p3.y,p4.y)   #矩形1最高端大于矩形最低端
    and max(p3.y,p4.y)>=min(p1.y,p2.y)): #矩形2最高端大于矩形最低端
    #若通过快速排斥则进行跨立实验
        if(cross(p1,p2,p3)*cross(p1,p2,p4)<0
           and cross(p3,p4,p1)*cross(p3,p4,p2)<0):
            D=2
        elif (cross(p1,p2,p3)*cross(p1,p2,p4)==0
           and cross(p3,p4,p1)*cross(p3,p4,p2)==0):
            D=1
        else:
            D=0
    else:
        D=0
    return D
t=int(input())
for i in range(t):
    p1,p2,p3,p4=point(0,0),point(0,0),point(0,0),point(0,0)
    x=list(map(float,input().split()))
    y=list(map(float,input().split()))
    p1.x,p1.y=x[0],x[1]
    p2.x,p2.y=x[2],x[3]
    p3.x,p3.y=y[0],y[1]
    p4.x,p4.y=y[2],y[3]
    print(IsIntersec(p1,p2,p3,p4))

并查集


一般并查集


朋友的朋友是朋友

'''
https://www.lanqiao.cn/problems/1135/learning/
难度: 简单   标签: 并查集
'''
N,M = map(int,input().split())
f = [i for i in range(N+1)]
def find(x):
    if f[x] != x:
        f[x] = find(f[x])
    return f[x]
def union(x,y):
    fx = find(x)
    fy = find(y)
    if fx != fy:
        f[fy] = fx
for i in range(M):
    op,x,y = map(int,input().split())
    if op == 2:
        if find(f[x]) == find(f[y]):
            print('YES')
        else:
            print('NO')
    elif op == 1:
        union(x,y)


种类并查集


一般的并查集是亲戚的亲戚是亲戚


一般的并查集,维护的是具有连通性、传递性的关系,例如亲戚的亲戚是亲戚。但是,有时候,我们要维护另一种关系:敌人的敌人是朋友。种类并查集就是为了解决这个问题而诞生的。


我们开一个两倍大小的并查集。例如,假如我们要维护4个元素的并查集,我们改为开8个单位的空间:


63cdb9adabf492506cdd05b2cbb5687d.png


我们用14维护**朋友**关系(就这道题而言,是指关在同一个监狱的狱友),用58维护敌人关系(这道题里是指关在不同监狱的仇人)。现在假如我们得到信息:1和2是敌人,应该怎么办?


我们merge(1, 2+n), merge(1+n, 2);。这里n就等于4,但我写成n这样更清晰。对于1个编号为i的元素,i+n是它的敌人。所以这里的意思就是:1是2的敌人,2是1的敌人。


d3dc8afa57883cf5791096639ae77356.png

现在假如我们又知道2和4是敌人,我们merge(2, 4+n), merge(2+n, 4);:


42f61b7008f5e75ab530d18c488a6ffe.png


发现了吗,敌人的敌人就是朋友,2和4是敌人,2和1也是敌人,所以这里,1和4通过2+n这个元素间接地连接起来了。这就是种类并查集工作的原理。


'''
https://www.lanqiao.cn/problems/1136/learning/
难度: 简单   标签: 种类并查集
'''
import os
import sys
# 请在此输入您的代码
n,m = map(int,input().split())
# 用一半来维护朋友关系,另一半用来维护敌人关系
# 对于1个编号为i的元素,i+n是它的敌人。
f = [i for i in range(2*n+1)] # 种类并查集
def find(x):
    if f[x] != x:
        f[x] = find(f[x])
    return f[x]
def union(x,y):
    fx = find(x)
    fy = find(y)
    if fx != fy:
        f[fy] = fx
for _ in range(m):
    x,y = map(int,input().split())
    # 判断是否是朋友,或者相互是敌人,这样就说明有问题
    if find(x) == find(y) or find(x+n) == find(y+n):
        print(x)
        break
    union(x,y+n) # 维护敌人关系
    union(x+n,y) # 维护敌人关系


最小生成树


Kruskal算法,选择边,类似于并查集的写法

'''
https://www.lanqiao.cn/problems/1124/learning/
难度: 简单   标签: Kruskal, Prim
'''
n,m = map(int,input().split())
# graph = [[0]*(n+1) for _ in range(n+1)]
edge = []
for _ in range(m):
    u,v,w = map(int,input().split())
    edge.append((u,v,w))
f = [i for i in range(n+1)]
def find(x):
    if f[x] != x:
        f[x] = find(f[x])
    return f[x]
def union(x,y):
    fx,fy = find(x),find(y)
    if fx != fy:
        f[fy] = fx
ans = 0
cnt = 0
edge.sort(key=lambda x:x[2])
for i in edge:
    u,v,w = i
    if find(u) != find(v) and cnt <= n - 1:
        ans += w
        union(u,v)
        cnt += 1
if cnt < n - 1:
    print(-1)
else:
    print(ans)

树状数组

def lowbit(x):
    return x & -x
def upate(x, d):
    while x <= n:
        tree[x] += d
        x += lowbit(x)
def getsum(x):
    ans = 0
    while x:
        ans += tree[x]
        x -= lowbit(x)
    return ans

树状数组求逆序

import os
import sys
# 请在此输入您的代码
def lowbit(x):
  return x&-x
def update(x,d):
  while x <= n:
    tree[x] += d
    x += lowbit(x)
def getsum(x):
  res = 0
  while x:
    res += tree[x]
    x -= lowbit(x)
  return res
n = int(input())
tree = [0]*(n+1)
a = list(map(int,input().split()))
a = [0] + a
ans = 0
tree = [0 for _ in range(n+1)]
for i in range(1,n+1):
  update(a[i],1)
  ans += (i-getsum(a[i]))
print(ans)

威尔逊定理

十八世纪中叶,一位英国法官约翰·威尔逊爵士,发现了数论中一种极为罕见的关系:取从1到某个质数所有连续正整数的乘积,例如从1乘到11,即11的阶乘11!。显然,11!能被从1到11的所有整数整除,除去11这个数,得10!。无疑10!不能被11整除。


然而,如果给10!加上1的话,1×2×3×4×5×6×7×8×9×10+1=3628801,怎么也不会想到,3628801却能被11整除(3628801÷11=329891)。类似地,从1到质数7的阶乘7!中略去7,再加上1,得1×2×3×4×5×6+1=721,721也能被7整除(721÷7=103)

11 和 7 都是质数,研究发现,此种整除性对一切质数都成立,但对合数却不成立。下面的表格展示了这一规律:


image.png

image.png

威尔逊定理:

p为质数时,(p-1)!+1能被p整除。

威尔逊定理逆定理:

若一个数(p-1)!+1能被p整除,那么p为质数



97444d4444974a9db73ab22ffbd76426.png


"""
https://www.lanqiao.cn/problems/1244/learning/
难度: 简单   标签: 威尔逊定理
题目写错了,求的是(n-1)%n的结果
"""
n = int(input())
flag = False
for i in range(2,int(n**0.5)+1):
    if n%i == 0:
        flag = True
        break
if not flag:
    print(n-1)
else:
    if n == 4:
        print(2)
    else:
        print(0)


相关文章
|
23天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
233 55
|
12天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
103 66
|
1天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
16 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
146 67
|
2月前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
130 61
|
2月前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
123 63
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
167 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
8天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
14天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
45 5
|
24天前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
48 4