np.ndarray与torch.Tensor之间的转化 (图像的区别)

简介: np.ndarray与torch.Tensor之间的转化 (图像的区别)

np.ndarray转为torch.Tensor


在深度学习中,原始图像需要转换为深度学习框架自定义的数据格式,在pytorch中,需要转为torch.Tensor


pytorch提供了torch.Tensornumpy.ndarray转换为接口


方法名 作用
torch.from_numpy(xxx) numpy.ndarray转为torch.Tensor
tensor1.numpy() 获取tensor1对象的numpy格式数据


torch.Tensor 高维矩阵的表示: N x C x H x W

numpy.ndarray 高维矩阵的表示:N x H x W x C

因此在两者转换的时候需要使用numpy.transpose( ) 方法 。


def imshow(img):
    img = img / 2 + 0.5
    img = np.transpose(img.numpy(),(1,2,0))
    plt.imshow(img)


相关文章
|
存储 算法 计算机视觉
np.zeros初始化图像
np.zeros初始化图像
|
存储 PyTorch 算法框架/工具
Tensor to img && imge to tensor (pytorch的tensor转换)
Tensor to img && imge to tensor (pytorch的tensor转换)
|
1月前
|
PyTorch 算法框架/工具 Python
Pytorch学习笔记(十):Torch对张量的计算、Numpy对数组的计算、它们之间的转换
这篇文章是关于PyTorch张量和Numpy数组的计算方法及其相互转换的详细学习笔记。
35 0
|
3月前
|
存储 机器学习/深度学习 算法框架/工具
张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix)
张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix)
51 1
|
机器学习/深度学习 PyTorch TensorFlow
张量(Tensor)
张量(Tensor)是矩阵的推广,是一种多维数组或多维矩阵的概念。它可以包含零个或多个轴(也称为维度),每个轴上有固定的大小。张量可以是标量(零维张量)、向量(一维张量)、矩阵(二维张量)以及更高维度的数组。
163 1
|
算法 数据挖掘 计算机视觉
numpy ndarray嵌套ndarray浅显理解
numpy ndarray嵌套ndarray浅显理解
|
计算机视觉 Python
【opencv】图像数据类型由numpy转为tensor后颜色改变
【opencv】图像数据类型由numpy转为tensor后颜色改变
293 1
【opencv】图像数据类型由numpy转为tensor后颜色改变
|
机器学习/深度学习 PyTorch TensorFlow
|
PyTorch 算法框架/工具
torch,如何将两个二维张量,按照第一维度,合并
在这个例子中,torch.cat() 函数的第一个参数是一个列表,包含要拼接的张量 x 和 y,第二个参数是拼接的维度,即第一维度。拼接后的张量 z 的形状为 (6, 4),因为两个原始张量的第一维度都是 3,拼接后就变成了 6。
733 0
怎么将[tensor([[ 1, 2]]), tensor([[5, 6]]), tensor([[9, 10]])] 合并成 tensor([[1,2],[3,4],[5,6]])
可以先使用 torch.cat() 函数将列表中的张量在第0维(行)上进行拼接,然后再使用 .view() 函数将形状调整为需要的形状。
188 0