如何从语法与参数层面对Hive进行调优

简介: 作为企业Hadoop应用的核心产品,Hive承载着FaceBook、淘宝等大佬95%以上的离线统计,很多企业里的离线统计甚至全由Hive完成,如电商、金融等行业。Hive在企业云计算平台发挥的作用和影响愈来愈大。因此,如何优化提速已经显得至关重要。

简介


作为企业Hadoop应用的核心产品,Hive承载着FaceBook、淘宝等大佬95%以上的离线统计,很多企业里的离线统计甚至全由Hive完成,如电商、金融等行业。Hive在企业云计算平台发挥的作用和影响愈来愈大。因此,如何优化提速已经显得至关重要。

好的架构胜过任何优化,好的HQL同样会效率大增,修改Hive参数,有时也能起到很好的效果。

那什么时候优化呢?

答:有了瓶颈才需要优化。

那么应该从那些方面进行优化呢?

  1. Hadoop的主要性能瓶颈是IO负载,降IO负载是优化的重头戏。
  2. 对中间结果的压缩。
  3. 合理设置分区,静态分区和动态分区。


Hive Sql语法层面和Properties参数层面优化

优化方法主要有如下三个层面:

  • 合并小文件
  • 避免数据倾斜,解决数据倾斜
  • 减少job数据(合并job,大job的拆分...)


优化手段


合理控制Map和Reduce数

map数

  1. Map数过大

Map阶段输出文件太小,产生大量小文件(下一个阶段就需要进行小文件合并,否则到reduce阶段就会浪费很多reduce数)。

初始化和创建map的开销很大。

  1. Map数过小

文件处理或查询并发度小,Job执行空间过长。

大量作业时,容易堵塞集群。

通常情况下,作业会通过input文件产生一个或者多个map数。

主要的决定因素有:input文件数,input文件大小。

举例

a)假设input目录下有1个文件a,大小为800M,那么hadoop会将该文件a分隔成7个块(6个128M的块和1个32M的块,Block是128M),从而产生7个map数。

b)假设input目录下有3个文件a,b,c,大小分别为30M,60M,130M, 那么hadoop会分隔成4个块(30M,60M,128M,2M),从而产生4个map数。

拆分是根据大文件来分的,而map数是根据文件数来生成的。

解决方法

两种方式控制Map数。即,减少map数和增加map数。

  1. 减少map数可以通过合并小文件来实现,这点是对文件源。
  2. 增加map数的可以通过控制上一个job的reduce数来控制(一个sql中join多个表会分解为多个mapreduce)

Map对应参数和默认值:

set hive.merge.mapfiles = true; # 默认为true,在Map-only的任务结束时合并小文件,map阶段Hive自动对小文件合并。
set hive.merge.mapredfiles = true; # 默认false,true时在MapReduce的任务结束时合并小文件
set hive.merge.per.task = 256*1000*1000; # 合并文件的大小
set mapred.max.split.size = 256000000; # 每个Map最大分割大小(hadoop)
set mapred.min.split.size.per.node = 100000000; # 一个节点上split的最小值
set hive.input.format =org.apache.hadoop.hive.ql.io.CombineHiveInputFormat; # 执行Map前进行小文件合并
# 在开启了org.apache.hadoop.hive.ql.io.CombineHiveInputFormat后,
# 一个datanode节点上多个小文件会进行合并,
# 合并文件数大小由 mapred.max.split.size 限制的大小决定。
# mapred.min.split.size.per.node 决定了多个datanode上的文件是否需要合并。
复制代码


Hive中设置map数:参数mapred.map.tasks,并不是每次都是有效的,要看大小是否合理。如下所示:

set mapred.map.tasks=100;
复制代码


备注:

set的作用域是session级

案例环境如下:

hive.merge.mapredfiles=true # 默认是false,可以在hive-site.xml里配置
hive.merge.mapfiles=true
hive.merge.per.task=256000000
mapred.map.tasks=2(默认值)
复制代码


因为合并小文件默认为true,而dfs.block.sizehive.merge.per.task的搭配使得合并后的绝大部分文件都在256MB左右。

场景一:

现在我们假设有3个300MB大小的文件,整个JOB会有6个map.其牛3个map分别处理256M的数据,还有3个map分别处理44M的数据。

那么木桶效应就来了,整个Job的map阶段的执行时间,不是看最短的1个map的执行时间,而是看最长的1个map的执行时间。虽然有3个map分别只处理44MB的数据,可以很快跑完,但它们还是要等待另外3个处理256MB的map。显然,处理256MB的3个map拖了整个JOB的后腿。

场景二:

如果我们把mapred.map.tasks设置成6,再来看一下变化:goalsize=min(900M/6, 256M)=150M整个JOB同样会分配6个Map来处理,每个map处理150MB,非常均匀,谁都不会拖后腿,最合理地分配了资源,执行时间大约为场景一的59%(150/256)。

reduce数

  1. Reduce数过大

生成了很多个小文件(最终输出文件由reduce决定,一个reduce一个文件),那么如果这些小文件作为下一个Job输入,则也会出现小文件过多需要进行合并(耗费资源)的问题。

启动和初始化reduce也会消耗大量的时间和资源,有多少个reduce就会有多少个输出文件。

  1. Reduce数过小

每个文件很大,执行耗时。

可能出现数据领斜。

reduce个数的如何决定?

默认下,Hive分配reduce数基于以下参数:

  • 参数1:hive.exec.reducers.bytes.per.reducer(默认是1G)
  • 参数2:hive.exec.reducers.max(最大reduce数,默认为999)

计算reduce数的公式:

N=min(参数2,总输入数据量/参数1) 即, 默认一个reduce处理1G数据量

什么情况下只有一个reduce?

很多时候你会发现任务中不管数据量多大,不管你有没有设置调reduce个数的参数,任务中一直都只有一个reduce任务(会产生数据倾斜)。

原因:

  1. 数据量小于hive.exec.reducers.bytes.per.reducer参数值(通常情况下设置reduce个数会起作用)
  2. 没有group by的汇总
  3. 用了order by

如何解决?

设置reduce数参数mapred.reduce.tasks,默认是1。

set mapred.reduce.tasks=10
复制代码


设置reduce数有时对我们优化非常有帮助。

当某个job的结果被后边job多次引用时,设置该参数,以便增大访问的map数。Reuduce数决定中间结果或落地文件数,文件大小和Block大小无关。


解决数据倾斜

什么是数据领斜?

hadoop框架的特性决定最怕数据倾斜。由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点。

症状:

  • map阶段快,reduce阶段非常慢;
  • 某些map很快,某些map很慢;
  • 某些reduce很快,某些reduce奇慢。

具体情况如下:

  1. 数据在节点上分布不均匀(无法避免)。
  2. join 时 on 关键词中个别值量很大(如null值)
  3. count(distinct),数据量大的情况下,容易数据倾斜,因为count(distinct)是按group by字段分组,按distinct字段排序。(有时无法避免)

网络异常,图片无法展示
|

数据倾斜的解决方案

1、参数调节

Map 端部分聚合,相当于Combiner,如下所示:

hive.map.aggr=true
复制代码


有数据倾斜的时候进行负载均衡,将hive.groupby.skewindata设定为true,生成的查询计划会有两个 MR Job。

  • 第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;
  • 第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。

如下所示:

hive.groupby.skewindata=true
复制代码


2、SQL语句调节

Join:

关于驱动表的选取:选用join key分布最均匀的表作为驱动表

做好列裁剪和filter操作,以达到两表做join的时候,数据量相对变小的效果。

大表与小表Join:

使用map join让小的维度表(1000条以下的记录条数)先进内存。在map端完成reduce。

大表与大表Join:

把空值的key变成一个字符串加上随机数,把倾斜的数据分到不同的reduce上,由于null值关联不上,处理后并不影响最终结果。

count distinct大量相同特殊值:

count distinct时,将值为空的情况单独处理,如果是计算count distinct,可以不用处理,直接过滤,在最后结果中加1。如果还有其他计算,需要进行group by,可以先将值为空的记录单独处理,再和其他计算结果进行union。

group by维度过小:

采用sum()group by的方式来替换count(distinct)完成计算。

特殊情况特殊处理:

在业务逻辑优化效果的不大情况下,有些时候是可以将倾斜的数据单独拿出来处理,最后union回去。

应用场景

(一)空值产生的数据倾斜

场景:

如日志中,常会有信息丢失的问题,比如日志中的user_id,如果取其中的user_id和用户表中的user_id关联,会碰到数据倾斜的问题。

解决方法一

user_id为空的不参与关联。

select * from log a
  join users b
  on a.user_id is not null
  and a.user_id = b.user_id
union all
select * from log a
  where a.user_id is null;
复制代码


解决方法二

赋与空值新的key值。

select * from log a left outer join users b on case when a.user_id is null then concat('hive',rand() ) 
else a.user_id end = b.user_id;
复制代码

结论:

方法2比方法1效率更好,不但io少了,而且作业数也少了。

解决方法1中 log读取两次,job是2。

解决方法2中 job数是1 。这个优化适合无效 id (比如 -99 , '', null 等) 产生的倾斜问题。把空值的key变成一个字符串加上随机数,就能把倾斜的数据分到不同的reduce上,解决数据倾斜问题。

(二)不同数据类型关联产生数据倾斜

场景:

用户表中user_id字段为int,log表中user_id字段既有string类型也有int类型。当按照user_id进行两个表的Join操作时,默认的Hash操作会按int型的id来进行分配,这样会导致所有string类型id的记录都分配到一个Reducer中。

解决方法:

把数字类型转换成字符串类型

select * from users a
  left outer join logs b
  on a.usr_id = cast(b.user_id as string);
复制代码


(三)小表不小不大,怎么用 map join 解决倾斜问题

使用 map join 解决小表(记录数少)关联大表的数据倾斜问题,这个方法使用的频率非常高,但如果小表很大,大到map join会出现bug或异常,这时就需要特别的处理。

解决方法如下:

select * from log a
  left outer join users b
  on a.user_id = b.user_id;
复制代码

users 表有 600w+ 的记录,把 users 分发到所有的 map 上也是个不小的开销,而且 map join 不支持这么大的小表。如果用普通的 join,又会碰到数据倾斜的问题。

解决方法如下:

select /*+mapjoin(x)*/* from log a
  left outer join (
    select  /*+mapjoin(c)*/d.*
      from ( select distinct user_id from log ) c
      join users d
      on c.user_id = d.user_id
    ) x
  on a.user_id = b.user_id;
复制代码


假如,log里user_id有上百万个,这就又回到原来map join问题。所幸,每日的会员uv不会太多,有交易的会员不会太多,有点击的会员不会太多,有佣金的会员不会太多等等。所以这个方法能解决很多场景下的数据倾斜问题。

相关文章
|
7月前
|
SQL 大数据 HIVE
Hive 任务调优实践总结
Hive 任务调优实践总结
62 0
|
SQL 分布式计算 Hadoop
55 Hive Shell参数
55 Hive Shell参数
56 0
|
SQL 分布式计算 资源调度
阿里云MaxCompute-Hive作业迁移语法兼容性踩坑记录
阿里云MaxCompute-Hive作业迁移语法兼容性踩坑记录
1285 0
|
7月前
|
SQL 存储 大数据
【大数据技术Hadoop+Spark】Hive基础SQL语法DDL、DML、DQL讲解及演示(附SQL语句)
【大数据技术Hadoop+Spark】Hive基础SQL语法DDL、DML、DQL讲解及演示(附SQL语句)
268 0
|
SQL 存储 大数据
黑马程序员-大数据入门到实战-分布式SQL计算 Hive 语法与概念
黑马程序员-大数据入门到实战-分布式SQL计算 Hive 语法与概念
149 0
|
2月前
|
SQL 分布式计算 关系型数据库
Hadoop-13-Hive 启动Hive 修改启动参数命令行启动测试 几句简单的HQL了解Hive
Hadoop-13-Hive 启动Hive 修改启动参数命令行启动测试 几句简单的HQL了解Hive
66 2
|
3月前
|
SQL 数据处理 HIVE
HIVE的数据倾斜调优
hive数据倾斜主要是由shuffle引起的,而引起shuffle的又主要有四种情况,分别为: 1.group by 2.join 3.count(distinct) 4.开窗函数
70 8
|
7月前
|
SQL 分布式计算 资源调度
一文看懂 Hive 优化大全(参数配置、语法优化)
以下是对提供的内容的摘要,总长度为240个字符: 在Hadoop集群中,服务器环境包括3台机器,分别运行不同的服务,如NodeManager、DataNode、NameNode等。集群组件版本包括jdk 1.8、mysql 5.7、hadoop 3.1.3和hive 3.1.2。文章讨论了YARN的配置优化,如`yarn.nodemanager.resource.memory-mb`、`yarn.nodemanager.vmem-check-enabled`和`hive.map.aggr`等参数,以及Map-Side聚合优化、Map Join和Bucket Map Join。
378 0
|
7月前
|
SQL 分布式计算 Java
bigdata-24-Hive调优
bigdata-24-Hive调优
37 0
|
7月前
|
SQL 关系型数据库 HIVE
Hive中的HQL是什么?请解释其语法和常用操作。
Hive中的HQL是什么?请解释其语法和常用操作。
67 0