【Dataphin智能运维】智能基线,自动化预警代替人工监控

本文涉及的产品
智能数据建设与治理Dataphin,200数据处理单元
简介: DataphinV3.6版本全新上线智能运维模块,支持基线监控和调度限流功能。基线监控能够快速捕捉导致基线上的任务无法按时完成的异常情况并提前预警,保障复杂依赖场景下重要数据能在预期时间内顺利产出,帮助您降低人工配置成本、提升监控及时性和准确性、避免无效报警,运维人员的好帮手,管理者的福音!

智能基线监控能够快速捕捉导致基线上的任务无法按时完成的异常情况并提前预警,保障复杂依赖场景下重要数据能在预期时间内顺利产出,帮助您降低配置成本、避免无效报警、自动监控所有重要任务。


一、相关概念介绍

概念

释义

基线负责人

负责配置基线的保障节点、保障时间及告警配置等,为整条基线按时产出正确的数据负责,通常会接收基线预警和破线的告警消息。

基线任务负责人

每条基线中每个任务的负责人被称为基线任务负责人(即任务运维负责人),主要保障单个任务不影响整条基线按时产出正确的数据,一般是被动加入基线维护的,通常会接收基线上单个任务运行出错或变慢的告警消息。

基线优先级

  • 基线优先级和任务优先级只有一个生效。
  • 任务被添加到基线后,以相关的基线中最高的优先级作为任务优先级,原本配置的任务优先级无效;任务没有任何相关基线时,以任务优先级为准。
  • 开通基线功能后,调度配置部分的任务优先级,以及运维中心的修改优先级,仅支持选择:最低、低、中等,以保障基线任务可以配置更高的优先级,优先分配资源。
  • 基线优先级可以上传导至计算引擎侧的调度优先级,基线等级越高调度优先级越高。

基线保障节点

一个基线至少有一个需要保障的末端节点,可以添加多个保障节点,保障节点的所有上游依赖节点均会被纳入基线监控范围,下游依赖则不关注。保障节点支持物理任务和逻辑表字段两种。

保障产出时间

业务对数据链路的要求时间,也是保障的末节点可以接受的数据最晚完成时间,一般和业务场景相关。如果到了这个时间点基线保障节点未全部产出,则会触发基线破线告警。

余量

用户预留处理可能产生的异常问题的时长,即预警时间-预计产出时间的时间差,是一个任务/资产异常的警戒程度的体现。

预警时间

即基线预警消息发送时间。如果推算到这个时间点基线保障的末节点无法全部产出,则会触发基线预警告警,基线存在破线风险。

破线时间

即基线破线告警消息发送时间。如果推算到这个时间点基线保障的末节点无法全部产出,则会触发基线破线告警。

关键路径

影响基线任务产出的多条路径中,运行耗时最长的路径。

关键实例

关键路径上最开始一层未运行成功的实例,及阻断实例。

基线事件

如果基线链路中单个任务(包括保障末节点)出错或者对比历史平均运行时间变慢,会触发告警,需要人为介入处理并避免破线。


二、基线核心能力概述

数据业务产出的核心质量指标是及时性与准确性,您可以按照数据业务的重要程度,用质量规则监控来实现内容保障,用基线监控来实现时效保障。基线一旦建立后,会按照调度依赖关系自动识别圈定需要被纳入监控范围的任务,并按照设定的预警时间和承诺时间,在被保障对象数据可能延迟产出的情况下发送基线告警。基线范围内的任务可设置更高优先级以优先分配资源。

核心能力1:自动推算需要纳入基线监控范围的任务

添加需要保障的任务或字段后,系统将基于依赖关系自动推算需要纳入监控范围的上游节点,降低人工配置成本。

配置基线时,您只需要关注需要保障产出及时性的核心业务数据对应的任务或字段即可,而无需关心整体依赖链路的全部任务,系统将基于任务之间的依赖关系自动推导计算需要纳入监控范围的节点。这样一来,即使更新了任务依赖关系,也无需更新基线配置,大大降低了人工操作成本;同时也提升了监控准确性,避免因为配置不同步而导致的监控缺失。

核心能力2:关联路径与关键实例识别

基线上需要保障的任务,其依赖关系可能错综复杂,Dataphin提供甘特图功能帮助您快速定位阻塞基线上数据产出的关键路径与关键实例,其中影响基线任务产出的多条路径中,耗时最长的路径为基线关键路径。

核心能力3:自动推算预计产出时间并触发相应告警

您可以将需要保障数据的预计产出时间配置为基线的“承诺时间”;同时可以根据任务复杂度和业务重要程度,预估任务运行出现异常可能需要的处理时间,将其配置为基线的“余量”,承诺时间-余量即为基线的预警时间。周期运行过程中,系统将根据基线链路上每个节点最近7天的历史运行概况,推算保障节点的预计运行完成时间。如果推算出的时间晚于配置的预警及承诺时间,则会发送基线告警,给开发人员和业务人员对应的通知。


三、应用场景:保障核心业务数据的产出任务,及时发现异常并预警,降低对业务用数的影响

1、添加需要保障的任务或字段后,系统将基于依赖关系自动推算需要纳入监控范围的上游节点,降低人工配置成本。

配置时只需要关注需要保障产出及时性的核心业务数据对应的任务或字段即可,而无需关心整体依赖链路的上游节点,系统将基于任务之间的依赖关系自动推导计算需要纳入监控范围的节点。这样一来,即使更新了任务依赖关系,也无需更新基线配置,大大降低了人工操作成本;同时也提升了监控准确性,避免因为配置不同步而导致的监控缺失。

2、可自定义配置基线整体的预警及破线告警、基线监控范围内单个节点的运行出错或变慢告警,便于及时发现异常并处理

可以将需要保障数据的预计产出时间配置为基线的“保障时间”;同时可以根据任务复杂度和业务重要程度,预估任务运行出现异常可能需要的处理时间,将其配置为基线的“余量”,承诺时间-余量即为基线的预警时间。周期运行过程中,系统将根据基线链路上每个节点最近7天的历史运行概况,推算保障节点的预计运行完成时间。如果推算出的时间晚于配置的预警及承诺时间,则会发送基线告警,给开发人员和业务人员对应的通知。

此外,还可以给基线链路上的单个任务或字段配置运行变慢或运行出错的告警,便于尽早发现可能出现的异常并处理,保障业务数据能正常产出。

image.png

3、支持查看每条基线的运行详情,如果存在预警或破线的风险,可自动识别定位到关键路径上的关键实例,便于开发运维人员直接处理,减少人工分析定位

image.png

image.png


四、结语

“有了基线功能,我再也不用天天盯着屏幕看核心任务是不是都开始运行了,也不用经常检查是不是漏配了监控,还能提前收到风险预警预留充足的处理时间,大大减少了我的工作量!”运维人员如是说。智能基线,以自动化监控解放人工运维,大大提升了工作效率,为您带来更好的使用体验!欢迎体验哦


Dataphin官网介绍:https://www.lydaas.com/dataphin

Dataphin公开咨询钉钉群:23381533

相关文章
|
15天前
|
机器学习/深度学习 人工智能 运维
人工智能在云计算中的运维优化:智能化的新时代
人工智能在云计算中的运维优化:智能化的新时代
108 49
|
9天前
|
存储 分布式计算 Hadoop
【产品升级】Dataphin V4.4重磅发布:开发运维提效、指标全生命周期管理、智能元数据生成再升级
Dataphin V4.4版本引入了多项核心升级,包括级联发布、元数据采集扩展、数据源指标上架、自定义属性管理等功能,大幅提升数据处理与资产管理效率。此外,还支持Hadoop集群管理、跨Schema数据读取、实时集成目标端支持Hudi及MaxCompute delta等技术,进一步优化用户体验。
142 3
【产品升级】Dataphin V4.4重磅发布:开发运维提效、指标全生命周期管理、智能元数据生成再升级
|
6天前
|
机器学习/深度学习 数据采集 运维
机器学习在运维中的实时分析应用:新时代的智能运维
机器学习在运维中的实时分析应用:新时代的智能运维
42 12
|
9天前
|
缓存 监控 安全
公司电脑监控软件的 Gradle 构建自动化优势
在数字化办公环境中,公司电脑监控软件面临代码更新频繁、依赖管理和构建复杂等挑战。Gradle 构建自动化工具以其强大的依赖管理、灵活的构建脚本定制及高效的构建缓存与增量构建特性,显著提升了软件开发效率和质量,支持软件的持续更新与优化,满足企业对员工电脑使用情况的监控与管理需求。
24 3
|
16天前
|
人工智能 运维 自然语言处理
智能化运维:AI在IT运维领域的深度应用与实践####
本文探讨了人工智能(AI)技术在IT运维领域的深度融合与实践应用,通过分析AI驱动的自动化监控、故障预测与诊断、容量规划及智能决策支持等关键方面,揭示了AI如何赋能IT运维,提升效率、降低成本并增强系统稳定性。文章旨在为读者提供一个关于AI在现代IT运维中应用的全面视角,展示其实际价值与未来发展趋势。 ####
112 4
|
19天前
|
机器学习/深度学习 人工智能 运维
智能化运维在现代IT系统中的应用与挑战####
本文探讨了智能化运维(AIOps)在现代IT系统中的关键作用及其面临的主要挑战。随着云计算、大数据和人工智能技术的飞速发展,传统的IT运维模式正逐渐向更加智能、自动化的方向转变。智能化运维通过集成机器学习算法、数据分析工具和自动化流程,显著提升了系统稳定性、故障响应速度和资源利用效率。然而,这一转型过程中也伴随着数据隐私、技术复杂性和人才短缺等问题。本文旨在为读者提供一个关于智能化运维的全面视角,分析其优势与挑战,并探讨未来的发展趋势。 ####
33 6
|
18天前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
15天前
|
机器学习/深度学习 人工智能 运维
智能化运维在现代数据中心的应用与挑战####
本文深入探讨了智能化运维(AIOps)技术在现代数据中心管理中的实际应用,分析了其带来的效率提升、成本节约及潜在风险。通过具体案例,阐述了智能监控、自动化故障排查、容量规划等关键功能如何助力企业实现高效稳定的IT环境。同时,文章也指出了实施过程中面临的数据隐私、技术整合及人才短缺等挑战,并提出了相应的解决策略。 --- ####
32 1
|
19天前
|
机器学习/深度学习 数据采集 人工智能
智能化运维在企业IT管理中的应用与实践####
本文深入探讨了智能化运维(AIOps)的核心技术原理,通过对比传统运维模式,揭示了AIOps如何利用大数据、机器学习等先进技术提升故障预测准确性、优化资源分配及自动化处理流程。同时,文章详细阐述了智能化运维平台的实施步骤,包括数据收集与分析、模型训练与部署、以及持续监控与优化,旨在为企业IT部门提供一套切实可行的智能化转型路径。最后,通过几个典型应用案例,如某大型电商平台的智能告警系统和金融企业的自动化故障排查流程,直观展示了智能化运维在实际业务场景中的显著成效,强调了其在提升运维效率、降低运营成本方面的关键作用。 ####
42 4
|
20天前
|
数据采集 机器学习/深度学习 人工智能
智能运维在IT管理中的实践与探索
【10月更文挑战第21天】 本文深入探讨了智能运维(AIOps)技术在现代IT管理中的应用,通过分析其核心组件、实施策略及面临的挑战,揭示了智能运维如何助力企业实现自动化监控、故障预测与快速响应,从而提升整体运维效率与系统稳定性。文章还结合具体案例,展示了智能运维在实际环境中的显著成效。
41 4

相关产品

  • 智能数据建设与治理 Dataphin
  • 下一篇
    DataWorks