参考论文:MobileNetV2: Inverted Residuals and Linear Bottlenecks
1、MobileNetV1架构的缺陷:
- 没有残差连接
- 很多Depthwise卷积核训练出来结果是0.
2、MobileNetV1与MobileNetV2架构对比
MobileNetV1先使用3*3
深度卷积,再使用1*1
逐点卷积,全部采用ReLU6激活函数
MobileNetV2先使用1*1
卷积升维,在高维空间下使用3*3
的深度卷积,在使用1*1
卷积降维,在降维时采用线性激活函数。当步长为1时,使用残差连接输入和输出;当步长为2时,不适用残差连接,因为此时的输入特征矩阵和输出特征矩阵的shaoe不相等。
3、普通残差块与逆残差块对比
普通残差是先使用1*1
卷积降维,再进行3*3
卷积,最后使用1*1
卷积升维(两边厚,中间薄)逆残差块是先使用
1*1
卷积进行升维,然后使用3*3
深度可分离卷积,最后使用1*1
卷积进行降维(两边薄,中间厚)
4、ReLU6激活函数
relu6函数在低精度浮点数下有比较好的表示性能
5、MobileNetV2的卷积块
==注意:这里只有当stride=1且输入特征矩阵与输出特征矩阵的shape相同时才能进行shortcut连接。==
6、MobileNetV2网络结构
每个序列的第一层都有一个步长s,其他所有层都使用步长1。所有空间卷积都使用3×3核t是扩展因子
c是卷积核个数
n是bottleneck的重复次数
s是步距(针对第一层,其他层为1)
7、模型复现(Tensorflow)
7.1 迁移学习快速复现模型结构
import tensorflow as tf
from tensorflow.keras.applications import MobileNetV2
from plot_model import plot_model
import matplotlib.pyplot as plt
mobileNet=MobileNetV2(
alpha=1.0,
include_top=True,
weights='imagenet'
)
mobileNet.summary()
Model: "mobilenetv2_1.00_224"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) [(None, 224, 224, 3) 0
__________________________________________________________________________________________________
Conv1_pad (ZeroPadding2D) (None, 225, 225, 3) 0 input_1[0][0]
__________________________________________________________________________________________________
Conv1 (Conv2D) (None, 112, 112, 32) 864 Conv1_pad[0][0]
__________________________________________________________________________________________________
bn_Conv1 (BatchNormalization) (None, 112, 112, 32) 128 Conv1[0][0]
__________________________________________________________________________________________________
Conv1_relu (ReLU) (None, 112, 112, 32) 0 bn_Conv1[0][0]
__________________________________________________________________________________________________
expanded_conv_depthwise (Depthw (None, 112, 112, 32) 288 Conv1_relu[0][0]
__________________________________________________________________________________________________
expanded_conv_depthwise_BN (Bat (None, 112, 112, 32) 128 expanded_conv_depthwise[0][0]
__________________________________________________________________________________________________
expanded_conv_depthwise_relu (R (None, 112, 112, 32) 0 expanded_conv_depthwise_BN[0][0]
__________________________________________________________________________________________________
expanded_conv_project (Conv2D) (None, 112, 112, 16) 512 expanded_conv_depthwise_relu[0][0
__________________________________________________________________________________________________
expanded_conv_project_BN (Batch (None, 112, 112, 16) 64 expanded_conv_project[0][0]
__________________________________________________________________________________________________
block_1_expand (Conv2D) (None, 112, 112, 96) 1536 expanded_conv_project_BN[0][0]
__________________________________________________________________________________________________
block_1_expand_BN (BatchNormali (None, 112, 112, 96) 384 block_1_expand[0][0]
__________________________________________________________________________________________________
block_1_expand_relu (ReLU) (None, 112, 112, 96) 0 block_1_expand_BN[0][0]
__________________________________________________________________________________________________
block_1_pad (ZeroPadding2D) (None, 113, 113, 96) 0 block_1_expand_relu[0][0]
__________________________________________________________________________________________________
block_1_depthwise (DepthwiseCon (None, 56, 56, 96) 864 block_1_pad[0][0]
__________________________________________________________________________________________________
block_1_depthwise_BN (BatchNorm (None, 56, 56, 96) 384 block_1_depthwise[0][0]
__________________________________________________________________________________________________
block_1_depthwise_relu (ReLU) (None, 56, 56, 96) 0 block_1_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_1_project (Conv2D) (None, 56, 56, 24) 2304 block_1_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_1_project_BN (BatchNormal (None, 56, 56, 24) 96 block_1_project[0][0]
__________________________________________________________________________________________________
block_2_expand (Conv2D) (None, 56, 56, 144) 3456 block_1_project_BN[0][0]
__________________________________________________________________________________________________
block_2_expand_BN (BatchNormali (None, 56, 56, 144) 576 block_2_expand[0][0]
__________________________________________________________________________________________________
block_2_expand_relu (ReLU) (None, 56, 56, 144) 0 block_2_expand_BN[0][0]
__________________________________________________________________________________________________
block_2_depthwise (DepthwiseCon (None, 56, 56, 144) 1296 block_2_expand_relu[0][0]
__________________________________________________________________________________________________
block_2_depthwise_BN (BatchNorm (None, 56, 56, 144) 576 block_2_depthwise[0][0]
__________________________________________________________________________________________________
block_2_depthwise_relu (ReLU) (None, 56, 56, 144) 0 block_2_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_2_project (Conv2D) (None, 56, 56, 24) 3456 block_2_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_2_project_BN (BatchNormal (None, 56, 56, 24) 96 block_2_project[0][0]
__________________________________________________________________________________________________
block_2_add (Add) (None, 56, 56, 24) 0 block_1_project_BN[0][0]
block_2_project_BN[0][0]
__________________________________________________________________________________________________
block_3_expand (Conv2D) (None, 56, 56, 144) 3456 block_2_add[0][0]
__________________________________________________________________________________________________
block_3_expand_BN (BatchNormali (None, 56, 56, 144) 576 block_3_expand[0][0]
__________________________________________________________________________________________________
block_3_expand_relu (ReLU) (None, 56, 56, 144) 0 block_3_expand_BN[0][0]
__________________________________________________________________________________________________
block_3_pad (ZeroPadding2D) (None, 57, 57, 144) 0 block_3_expand_relu[0][0]
__________________________________________________________________________________________________
block_3_depthwise (DepthwiseCon (None, 28, 28, 144) 1296 block_3_pad[0][0]
__________________________________________________________________________________________________
block_3_depthwise_BN (BatchNorm (None, 28, 28, 144) 576 block_3_depthwise[0][0]
__________________________________________________________________________________________________
block_3_depthwise_relu (ReLU) (None, 28, 28, 144) 0 block_3_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_3_project (Conv2D) (None, 28, 28, 32) 4608 block_3_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_3_project_BN (BatchNormal (None, 28, 28, 32) 128 block_3_project[0][0]
__________________________________________________________________________________________________
block_4_expand (Conv2D) (None, 28, 28, 192) 6144 block_3_project_BN[0][0]
__________________________________________________________________________________________________
block_4_expand_BN (BatchNormali (None, 28, 28, 192) 768 block_4_expand[0][0]
__________________________________________________________________________________________________
block_4_expand_relu (ReLU) (None, 28, 28, 192) 0 block_4_expand_BN[0][0]
__________________________________________________________________________________________________
block_4_depthwise (DepthwiseCon (None, 28, 28, 192) 1728 block_4_expand_relu[0][0]
__________________________________________________________________________________________________
block_4_depthwise_BN (BatchNorm (None, 28, 28, 192) 768 block_4_depthwise[0][0]
__________________________________________________________________________________________________
block_4_depthwise_relu (ReLU) (None, 28, 28, 192) 0 block_4_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_4_project (Conv2D) (None, 28, 28, 32) 6144 block_4_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_4_project_BN (BatchNormal (None, 28, 28, 32) 128 block_4_project[0][0]
__________________________________________________________________________________________________
block_4_add (Add) (None, 28, 28, 32) 0 block_3_project_BN[0][0]
block_4_project_BN[0][0]
__________________________________________________________________________________________________
block_5_expand (Conv2D) (None, 28, 28, 192) 6144 block_4_add[0][0]
__________________________________________________________________________________________________
block_5_expand_BN (BatchNormali (None, 28, 28, 192) 768 block_5_expand[0][0]
__________________________________________________________________________________________________
block_5_expand_relu (ReLU) (None, 28, 28, 192) 0 block_5_expand_BN[0][0]
__________________________________________________________________________________________________
block_5_depthwise (DepthwiseCon (None, 28, 28, 192) 1728 block_5_expand_relu[0][0]
__________________________________________________________________________________________________
block_5_depthwise_BN (BatchNorm (None, 28, 28, 192) 768 block_5_depthwise[0][0]
__________________________________________________________________________________________________
block_5_depthwise_relu (ReLU) (None, 28, 28, 192) 0 block_5_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_5_project (Conv2D) (None, 28, 28, 32) 6144 block_5_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_5_project_BN (BatchNormal (None, 28, 28, 32) 128 block_5_project[0][0]
__________________________________________________________________________________________________
block_5_add (Add) (None, 28, 28, 32) 0 block_4_add[0][0]
block_5_project_BN[0][0]
__________________________________________________________________________________________________
block_6_expand (Conv2D) (None, 28, 28, 192) 6144 block_5_add[0][0]
__________________________________________________________________________________________________
block_6_expand_BN (BatchNormali (None, 28, 28, 192) 768 block_6_expand[0][0]
__________________________________________________________________________________________________
block_6_expand_relu (ReLU) (None, 28, 28, 192) 0 block_6_expand_BN[0][0]
__________________________________________________________________________________________________
block_6_pad (ZeroPadding2D) (None, 29, 29, 192) 0 block_6_expand_relu[0][0]
__________________________________________________________________________________________________
block_6_depthwise (DepthwiseCon (None, 14, 14, 192) 1728 block_6_pad[0][0]
__________________________________________________________________________________________________
block_6_depthwise_BN (BatchNorm (None, 14, 14, 192) 768 block_6_depthwise[0][0]
__________________________________________________________________________________________________
block_6_depthwise_relu (ReLU) (None, 14, 14, 192) 0 block_6_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_6_project (Conv2D) (None, 14, 14, 64) 12288 block_6_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_6_project_BN (BatchNormal (None, 14, 14, 64) 256 block_6_project[0][0]
__________________________________________________________________________________________________
block_7_expand (Conv2D) (None, 14, 14, 384) 24576 block_6_project_BN[0][0]
__________________________________________________________________________________________________
block_7_expand_BN (BatchNormali (None, 14, 14, 384) 1536 block_7_expand[0][0]
__________________________________________________________________________________________________
block_7_expand_relu (ReLU) (None, 14, 14, 384) 0 block_7_expand_BN[0][0]
__________________________________________________________________________________________________
block_7_depthwise (DepthwiseCon (None, 14, 14, 384) 3456 block_7_expand_relu[0][0]
__________________________________________________________________________________________________
block_7_depthwise_BN (BatchNorm (None, 14, 14, 384) 1536 block_7_depthwise[0][0]
__________________________________________________________________________________________________
block_7_depthwise_relu (ReLU) (None, 14, 14, 384) 0 block_7_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_7_project (Conv2D) (None, 14, 14, 64) 24576 block_7_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_7_project_BN (BatchNormal (None, 14, 14, 64) 256 block_7_project[0][0]
__________________________________________________________________________________________________
block_7_add (Add) (None, 14, 14, 64) 0 block_6_project_BN[0][0]
block_7_project_BN[0][0]
__________________________________________________________________________________________________
block_8_expand (Conv2D) (None, 14, 14, 384) 24576 block_7_add[0][0]
__________________________________________________________________________________________________
block_8_expand_BN (BatchNormali (None, 14, 14, 384) 1536 block_8_expand[0][0]
__________________________________________________________________________________________________
block_8_expand_relu (ReLU) (None, 14, 14, 384) 0 block_8_expand_BN[0][0]
__________________________________________________________________________________________________
block_8_depthwise (DepthwiseCon (None, 14, 14, 384) 3456 block_8_expand_relu[0][0]
__________________________________________________________________________________________________
block_8_depthwise_BN (BatchNorm (None, 14, 14, 384) 1536 block_8_depthwise[0][0]
__________________________________________________________________________________________________
block_8_depthwise_relu (ReLU) (None, 14, 14, 384) 0 block_8_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_8_project (Conv2D) (None, 14, 14, 64) 24576 block_8_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_8_project_BN (BatchNormal (None, 14, 14, 64) 256 block_8_project[0][0]
__________________________________________________________________________________________________
block_8_add (Add) (None, 14, 14, 64) 0 block_7_add[0][0]
block_8_project_BN[0][0]
__________________________________________________________________________________________________
block_9_expand (Conv2D) (None, 14, 14, 384) 24576 block_8_add[0][0]
__________________________________________________________________________________________________
block_9_expand_BN (BatchNormali (None, 14, 14, 384) 1536 block_9_expand[0][0]
__________________________________________________________________________________________________
block_9_expand_relu (ReLU) (None, 14, 14, 384) 0 block_9_expand_BN[0][0]
__________________________________________________________________________________________________
block_9_depthwise (DepthwiseCon (None, 14, 14, 384) 3456 block_9_expand_relu[0][0]
__________________________________________________________________________________________________
block_9_depthwise_BN (BatchNorm (None, 14, 14, 384) 1536 block_9_depthwise[0][0]
__________________________________________________________________________________________________
block_9_depthwise_relu (ReLU) (None, 14, 14, 384) 0 block_9_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_9_project (Conv2D) (None, 14, 14, 64) 24576 block_9_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_9_project_BN (BatchNormal (None, 14, 14, 64) 256 block_9_project[0][0]
__________________________________________________________________________________________________
block_9_add (Add) (None, 14, 14, 64) 0 block_8_add[0][0]
block_9_project_BN[0][0]
__________________________________________________________________________________________________
block_10_expand (Conv2D) (None, 14, 14, 384) 24576 block_9_add[0][0]
__________________________________________________________________________________________________
block_10_expand_BN (BatchNormal (None, 14, 14, 384) 1536 block_10_expand[0][0]
__________________________________________________________________________________________________
block_10_expand_relu (ReLU) (None, 14, 14, 384) 0 block_10_expand_BN[0][0]
__________________________________________________________________________________________________
block_10_depthwise (DepthwiseCo (None, 14, 14, 384) 3456 block_10_expand_relu[0][0]
__________________________________________________________________________________________________
block_10_depthwise_BN (BatchNor (None, 14, 14, 384) 1536 block_10_depthwise[0][0]
__________________________________________________________________________________________________
block_10_depthwise_relu (ReLU) (None, 14, 14, 384) 0 block_10_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_10_project (Conv2D) (None, 14, 14, 96) 36864 block_10_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_10_project_BN (BatchNorma (None, 14, 14, 96) 384 block_10_project[0][0]
__________________________________________________________________________________________________
block_11_expand (Conv2D) (None, 14, 14, 576) 55296 block_10_project_BN[0][0]
__________________________________________________________________________________________________
block_11_expand_BN (BatchNormal (None, 14, 14, 576) 2304 block_11_expand[0][0]
__________________________________________________________________________________________________
block_11_expand_relu (ReLU) (None, 14, 14, 576) 0 block_11_expand_BN[0][0]
__________________________________________________________________________________________________
block_11_depthwise (DepthwiseCo (None, 14, 14, 576) 5184 block_11_expand_relu[0][0]
__________________________________________________________________________________________________
block_11_depthwise_BN (BatchNor (None, 14, 14, 576) 2304 block_11_depthwise[0][0]
__________________________________________________________________________________________________
block_11_depthwise_relu (ReLU) (None, 14, 14, 576) 0 block_11_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_11_project (Conv2D) (None, 14, 14, 96) 55296 block_11_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_11_project_BN (BatchNorma (None, 14, 14, 96) 384 block_11_project[0][0]
__________________________________________________________________________________________________
block_11_add (Add) (None, 14, 14, 96) 0 block_10_project_BN[0][0]
block_11_project_BN[0][0]
__________________________________________________________________________________________________
block_12_expand (Conv2D) (None, 14, 14, 576) 55296 block_11_add[0][0]
__________________________________________________________________________________________________
block_12_expand_BN (BatchNormal (None, 14, 14, 576) 2304 block_12_expand[0][0]
__________________________________________________________________________________________________
block_12_expand_relu (ReLU) (None, 14, 14, 576) 0 block_12_expand_BN[0][0]
__________________________________________________________________________________________________
block_12_depthwise (DepthwiseCo (None, 14, 14, 576) 5184 block_12_expand_relu[0][0]
__________________________________________________________________________________________________
block_12_depthwise_BN (BatchNor (None, 14, 14, 576) 2304 block_12_depthwise[0][0]
__________________________________________________________________________________________________
block_12_depthwise_relu (ReLU) (None, 14, 14, 576) 0 block_12_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_12_project (Conv2D) (None, 14, 14, 96) 55296 block_12_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_12_project_BN (BatchNorma (None, 14, 14, 96) 384 block_12_project[0][0]
__________________________________________________________________________________________________
block_12_add (Add) (None, 14, 14, 96) 0 block_11_add[0][0]
block_12_project_BN[0][0]
__________________________________________________________________________________________________
block_13_expand (Conv2D) (None, 14, 14, 576) 55296 block_12_add[0][0]
__________________________________________________________________________________________________
block_13_expand_BN (BatchNormal (None, 14, 14, 576) 2304 block_13_expand[0][0]
__________________________________________________________________________________________________
block_13_expand_relu (ReLU) (None, 14, 14, 576) 0 block_13_expand_BN[0][0]
__________________________________________________________________________________________________
block_13_pad (ZeroPadding2D) (None, 15, 15, 576) 0 block_13_expand_relu[0][0]
__________________________________________________________________________________________________
block_13_depthwise (DepthwiseCo (None, 7, 7, 576) 5184 block_13_pad[0][0]
__________________________________________________________________________________________________
block_13_depthwise_BN (BatchNor (None, 7, 7, 576) 2304 block_13_depthwise[0][0]
__________________________________________________________________________________________________
block_13_depthwise_relu (ReLU) (None, 7, 7, 576) 0 block_13_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_13_project (Conv2D) (None, 7, 7, 160) 92160 block_13_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_13_project_BN (BatchNorma (None, 7, 7, 160) 640 block_13_project[0][0]
__________________________________________________________________________________________________
block_14_expand (Conv2D) (None, 7, 7, 960) 153600 block_13_project_BN[0][0]
__________________________________________________________________________________________________
block_14_expand_BN (BatchNormal (None, 7, 7, 960) 3840 block_14_expand[0][0]
__________________________________________________________________________________________________
block_14_expand_relu (ReLU) (None, 7, 7, 960) 0 block_14_expand_BN[0][0]
__________________________________________________________________________________________________
block_14_depthwise (DepthwiseCo (None, 7, 7, 960) 8640 block_14_expand_relu[0][0]
__________________________________________________________________________________________________
block_14_depthwise_BN (BatchNor (None, 7, 7, 960) 3840 block_14_depthwise[0][0]
__________________________________________________________________________________________________
block_14_depthwise_relu (ReLU) (None, 7, 7, 960) 0 block_14_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_14_project (Conv2D) (None, 7, 7, 160) 153600 block_14_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_14_project_BN (BatchNorma (None, 7, 7, 160) 640 block_14_project[0][0]
__________________________________________________________________________________________________
block_14_add (Add) (None, 7, 7, 160) 0 block_13_project_BN[0][0]
block_14_project_BN[0][0]
__________________________________________________________________________________________________
block_15_expand (Conv2D) (None, 7, 7, 960) 153600 block_14_add[0][0]
__________________________________________________________________________________________________
block_15_expand_BN (BatchNormal (None, 7, 7, 960) 3840 block_15_expand[0][0]
__________________________________________________________________________________________________
block_15_expand_relu (ReLU) (None, 7, 7, 960) 0 block_15_expand_BN[0][0]
__________________________________________________________________________________________________
block_15_depthwise (DepthwiseCo (None, 7, 7, 960) 8640 block_15_expand_relu[0][0]
__________________________________________________________________________________________________
block_15_depthwise_BN (BatchNor (None, 7, 7, 960) 3840 block_15_depthwise[0][0]
__________________________________________________________________________________________________
block_15_depthwise_relu (ReLU) (None, 7, 7, 960) 0 block_15_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_15_project (Conv2D) (None, 7, 7, 160) 153600 block_15_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_15_project_BN (BatchNorma (None, 7, 7, 160) 640 block_15_project[0][0]
__________________________________________________________________________________________________
block_15_add (Add) (None, 7, 7, 160) 0 block_14_add[0][0]
block_15_project_BN[0][0]
__________________________________________________________________________________________________
block_16_expand (Conv2D) (None, 7, 7, 960) 153600 block_15_add[0][0]
__________________________________________________________________________________________________
block_16_expand_BN (BatchNormal (None, 7, 7, 960) 3840 block_16_expand[0][0]
__________________________________________________________________________________________________
block_16_expand_relu (ReLU) (None, 7, 7, 960) 0 block_16_expand_BN[0][0]
__________________________________________________________________________________________________
block_16_depthwise (DepthwiseCo (None, 7, 7, 960) 8640 block_16_expand_relu[0][0]
__________________________________________________________________________________________________
block_16_depthwise_BN (BatchNor (None, 7, 7, 960) 3840 block_16_depthwise[0][0]
__________________________________________________________________________________________________
block_16_depthwise_relu (ReLU) (None, 7, 7, 960) 0 block_16_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_16_project (Conv2D) (None, 7, 7, 320) 307200 block_16_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_16_project_BN (BatchNorma (None, 7, 7, 320) 1280 block_16_project[0][0]
__________________________________________________________________________________________________
Conv_1 (Conv2D) (None, 7, 7, 1280) 409600 block_16_project_BN[0][0]
__________________________________________________________________________________________________
Conv_1_bn (BatchNormalization) (None, 7, 7, 1280) 5120 Conv_1[0][0]
__________________________________________________________________________________________________
out_relu (ReLU) (None, 7, 7, 1280) 0 Conv_1_bn[0][0]
__________________________________________________________________________________________________
global_average_pooling2d (Globa (None, 1280) 0 out_relu[0][0]
__________________________________________________________________________________________________
Logits (Dense) (None, 1000) 1281000 global_average_pooling2d[0][0]
==================================================================================================
Total params: 3,538,984
Trainable params: 3,504,872
Non-trainable params: 34,112
7.2 手动搭建MobileNetV2
import math
import os
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.keras import backend
from tensorflow.keras import backend as K
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import Model
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import Conv2D, Add, ZeroPadding2D, GlobalAveragePooling2D, Dropout, Dense
from tensorflow.keras.layers import MaxPooling2D, Activation, DepthwiseConv2D, Input, GlobalMaxPooling2D
from tensorflow.keras.applications import imagenet_utils
from tensorflow.keras.applications.imagenet_utils import decode_predictions
from plot_model import plot_model
# from tensorflow.keras.utils.data_utils import get_file
# relu6!
def relu6(x):
return K.relu(x, max_value=6)
# 用于计算padding的大小
def correct_pad(inputs, kernel_size):
img_dim = 1
input_size = backend.int_shape(inputs)[img_dim:(img_dim + 2)]
if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size)
if input_size[0] is None:
adjust = (1, 1)
else:
adjust = (1 - input_size[0] % 2, 1 - input_size[1] % 2)
correct = (kernel_size[0] // 2, kernel_size[1] // 2)
return ((correct[0] - adjust[0], correct[0]),
(correct[1] - adjust[1], correct[1]))
# 使其结果可以被8整除,因为使用到了膨胀系数α
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
def _inverted_res_block(inputs, expansion, stride, alpha, filters, block_id):
in_channels = backend.int_shape(inputs)[-1]
pointwise_conv_filters = int(filters * alpha)
pointwise_filters = _make_divisible(pointwise_conv_filters, 8)
x = inputs
prefix = 'block_{}_'.format(block_id)
# part1 数据扩张
if block_id:
# Expand 利用1*1卷积升维
x = Conv2D(expansion * in_channels,
kernel_size=1,
padding='same',
use_bias=False,
activation=None,
name=prefix + 'expand')(x)
x = BatchNormalization(epsilon=1e-3,
momentum=0.999,
name=prefix + 'expand_BN')(x)
x = Activation(relu6, name=prefix + 'expand_relu')(x)
else:
prefix = 'expanded_conv_'
if stride == 2:
x = ZeroPadding2D(padding=correct_pad(x, 3),
name=prefix + 'pad')(x)
# part2 深度可分离卷积
x = DepthwiseConv2D(kernel_size=3,
strides=stride,
activation=None,
use_bias=False,
padding='same' if stride == 1 else 'valid',
name=prefix + 'depthwise')(x)
x = BatchNormalization(epsilon=1e-3,
momentum=0.999,
name=prefix + 'depthwise_BN')(x)
x = Activation(relu6, name=prefix + 'depthwise_relu')(x)
# part3:1*1卷积降维 压缩特征,而且不使用relu函数,保证特征不被破坏
x = Conv2D(pointwise_filters,
kernel_size=1,
padding='same',
use_bias=False,
activation=None,
name=prefix + 'project')(x)
x = BatchNormalization(epsilon=1e-3,# 小浮点数添加到方差中以避免除以零。
momentum=0.999,# 移动平均线的动量
name=prefix + 'project_BN')(x)
# 当输入通道数=输出通道数且步长为1,进行残差边的连接
if in_channels == pointwise_filters and stride == 1:
return Add(name=prefix + 'add')([inputs, x])
return x
def MobileNetV2(input_shape=(224, 224, 3),
alpha=1.0,
include_top=True,
weights='imagenet',
classes=1000):
rows = input_shape[0]
img_input = Input(shape=input_shape)
# stem部分
# 224,224,3 -> 112,112,32
first_block_filters = _make_divisible(32 * alpha, 8)
x = ZeroPadding2D(padding=correct_pad(img_input, 3),
name='Conv1_pad')(img_input)
x = Conv2D(first_block_filters,
kernel_size=3,
strides=(2, 2),
padding='valid',
use_bias=False,
name='Conv1')(x)
x = BatchNormalization(epsilon=1e-3,
momentum=0.999,
name='bn_Conv1')(x)
x = Activation(relu6, name='Conv1_relu')(x)
# 112,112,32 -> 112,112,16
x = _inverted_res_block(x, filters=16, alpha=alpha, stride=1,expansion=1, block_id=0)
# 112,112,16 -> 56,56,24
x = _inverted_res_block(x, filters=24, alpha=alpha, stride=2,expansion=6, block_id=1)
x = _inverted_res_block(x, filters=24, alpha=alpha, stride=1,expansion=6, block_id=2)
# 56,56,24 -> 28,28,32
x = _inverted_res_block(x, filters=32, alpha=alpha, stride=2,expansion=6, block_id=3)
x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1,expansion=6, block_id=4)
x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1,expansion=6, block_id=5)
# 28,28,32 -> 14,14,64
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=2,expansion=6, block_id=6)
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1,expansion=6, block_id=7)
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1,expansion=6, block_id=8)
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1,expansion=6, block_id=9)
# 14,14,64 -> 14,14,96
x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1,expansion=6, block_id=10)
x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1,expansion=6, block_id=11)
x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1,expansion=6, block_id=12)
# 14,14,96 -> 7,7,160
x = _inverted_res_block(x, filters=160, alpha=alpha, stride=2,expansion=6, block_id=13)
x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1,expansion=6, block_id=14)
x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1,expansion=6, block_id=15)
# 7,7,160 -> 7,7,320
x = _inverted_res_block(x, filters=320, alpha=alpha, stride=1,expansion=6, block_id=16)
if alpha > 1.0:
last_block_filters = _make_divisible(1280 * alpha, 8)
else:
last_block_filters = 1280
# 7,7,320 -> 7,7,1280
x = Conv2D(last_block_filters,
kernel_size=1,
use_bias=False,
name='Conv_1')(x)
x = BatchNormalization(epsilon=1e-3,
momentum=0.999,
name='Conv_1_bn')(x)
x = Activation(relu6, name='out_relu')(x)
x = GlobalAveragePooling2D()(x)
x = Dense(classes, activation='softmax',
use_bias=True, name='Logits')(x)
inputs = img_input
model = Model(inputs, x, name='mobilenetv2_%0.2f_%s' % (alpha, rows))
return model
model = MobileNetV2(input_shape=(224, 224, 3))
model.summary()
Model: "mobilenetv2_1.00_224"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) [(None, 224, 224, 3) 0
__________________________________________________________________________________________________
Conv1_pad (ZeroPadding2D) (None, 225, 225, 3) 0 input_1[0][0]
__________________________________________________________________________________________________
Conv1 (Conv2D) (None, 112, 112, 32) 864 Conv1_pad[0][0]
__________________________________________________________________________________________________
bn_Conv1 (BatchNormalization) (None, 112, 112, 32) 128 Conv1[0][0]
__________________________________________________________________________________________________
Conv1_relu (Activation) (None, 112, 112, 32) 0 bn_Conv1[0][0]
__________________________________________________________________________________________________
expanded_conv_depthwise (Depthw (None, 112, 112, 32) 288 Conv1_relu[0][0]
__________________________________________________________________________________________________
expanded_conv_depthwise_BN (Bat (None, 112, 112, 32) 128 expanded_conv_depthwise[0][0]
__________________________________________________________________________________________________
expanded_conv_depthwise_relu (A (None, 112, 112, 32) 0 expanded_conv_depthwise_BN[0][0]
__________________________________________________________________________________________________
expanded_conv_project (Conv2D) (None, 112, 112, 16) 512 expanded_conv_depthwise_relu[0][0
__________________________________________________________________________________________________
expanded_conv_project_BN (Batch (None, 112, 112, 16) 64 expanded_conv_project[0][0]
__________________________________________________________________________________________________
block_1_expand (Conv2D) (None, 112, 112, 96) 1536 expanded_conv_project_BN[0][0]
__________________________________________________________________________________________________
block_1_expand_BN (BatchNormali (None, 112, 112, 96) 384 block_1_expand[0][0]
__________________________________________________________________________________________________
block_1_expand_relu (Activation (None, 112, 112, 96) 0 block_1_expand_BN[0][0]
__________________________________________________________________________________________________
block_1_pad (ZeroPadding2D) (None, 113, 113, 96) 0 block_1_expand_relu[0][0]
__________________________________________________________________________________________________
block_1_depthwise (DepthwiseCon (None, 56, 56, 96) 864 block_1_pad[0][0]
__________________________________________________________________________________________________
block_1_depthwise_BN (BatchNorm (None, 56, 56, 96) 384 block_1_depthwise[0][0]
__________________________________________________________________________________________________
block_1_depthwise_relu (Activat (None, 56, 56, 96) 0 block_1_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_1_project (Conv2D) (None, 56, 56, 24) 2304 block_1_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_1_project_BN (BatchNormal (None, 56, 56, 24) 96 block_1_project[0][0]
__________________________________________________________________________________________________
block_2_expand (Conv2D) (None, 56, 56, 144) 3456 block_1_project_BN[0][0]
__________________________________________________________________________________________________
block_2_expand_BN (BatchNormali (None, 56, 56, 144) 576 block_2_expand[0][0]
__________________________________________________________________________________________________
block_2_expand_relu (Activation (None, 56, 56, 144) 0 block_2_expand_BN[0][0]
__________________________________________________________________________________________________
block_2_depthwise (DepthwiseCon (None, 56, 56, 144) 1296 block_2_expand_relu[0][0]
__________________________________________________________________________________________________
block_2_depthwise_BN (BatchNorm (None, 56, 56, 144) 576 block_2_depthwise[0][0]
__________________________________________________________________________________________________
block_2_depthwise_relu (Activat (None, 56, 56, 144) 0 block_2_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_2_project (Conv2D) (None, 56, 56, 24) 3456 block_2_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_2_project_BN (BatchNormal (None, 56, 56, 24) 96 block_2_project[0][0]
__________________________________________________________________________________________________
block_2_add (Add) (None, 56, 56, 24) 0 block_1_project_BN[0][0]
block_2_project_BN[0][0]
__________________________________________________________________________________________________
block_3_expand (Conv2D) (None, 56, 56, 144) 3456 block_2_add[0][0]
__________________________________________________________________________________________________
block_3_expand_BN (BatchNormali (None, 56, 56, 144) 576 block_3_expand[0][0]
__________________________________________________________________________________________________
block_3_expand_relu (Activation (None, 56, 56, 144) 0 block_3_expand_BN[0][0]
__________________________________________________________________________________________________
block_3_pad (ZeroPadding2D) (None, 57, 57, 144) 0 block_3_expand_relu[0][0]
__________________________________________________________________________________________________
block_3_depthwise (DepthwiseCon (None, 28, 28, 144) 1296 block_3_pad[0][0]
__________________________________________________________________________________________________
block_3_depthwise_BN (BatchNorm (None, 28, 28, 144) 576 block_3_depthwise[0][0]
__________________________________________________________________________________________________
block_3_depthwise_relu (Activat (None, 28, 28, 144) 0 block_3_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_3_project (Conv2D) (None, 28, 28, 32) 4608 block_3_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_3_project_BN (BatchNormal (None, 28, 28, 32) 128 block_3_project[0][0]
__________________________________________________________________________________________________
block_4_expand (Conv2D) (None, 28, 28, 192) 6144 block_3_project_BN[0][0]
__________________________________________________________________________________________________
block_4_expand_BN (BatchNormali (None, 28, 28, 192) 768 block_4_expand[0][0]
__________________________________________________________________________________________________
block_4_expand_relu (Activation (None, 28, 28, 192) 0 block_4_expand_BN[0][0]
__________________________________________________________________________________________________
block_4_depthwise (DepthwiseCon (None, 28, 28, 192) 1728 block_4_expand_relu[0][0]
__________________________________________________________________________________________________
block_4_depthwise_BN (BatchNorm (None, 28, 28, 192) 768 block_4_depthwise[0][0]
__________________________________________________________________________________________________
block_4_depthwise_relu (Activat (None, 28, 28, 192) 0 block_4_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_4_project (Conv2D) (None, 28, 28, 32) 6144 block_4_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_4_project_BN (BatchNormal (None, 28, 28, 32) 128 block_4_project[0][0]
__________________________________________________________________________________________________
block_4_add (Add) (None, 28, 28, 32) 0 block_3_project_BN[0][0]
block_4_project_BN[0][0]
__________________________________________________________________________________________________
block_5_expand (Conv2D) (None, 28, 28, 192) 6144 block_4_add[0][0]
__________________________________________________________________________________________________
block_5_expand_BN (BatchNormali (None, 28, 28, 192) 768 block_5_expand[0][0]
__________________________________________________________________________________________________
block_5_expand_relu (Activation (None, 28, 28, 192) 0 block_5_expand_BN[0][0]
__________________________________________________________________________________________________
block_5_depthwise (DepthwiseCon (None, 28, 28, 192) 1728 block_5_expand_relu[0][0]
__________________________________________________________________________________________________
block_5_depthwise_BN (BatchNorm (None, 28, 28, 192) 768 block_5_depthwise[0][0]
__________________________________________________________________________________________________
block_5_depthwise_relu (Activat (None, 28, 28, 192) 0 block_5_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_5_project (Conv2D) (None, 28, 28, 32) 6144 block_5_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_5_project_BN (BatchNormal (None, 28, 28, 32) 128 block_5_project[0][0]
__________________________________________________________________________________________________
block_5_add (Add) (None, 28, 28, 32) 0 block_4_add[0][0]
block_5_project_BN[0][0]
__________________________________________________________________________________________________
block_6_expand (Conv2D) (None, 28, 28, 192) 6144 block_5_add[0][0]
__________________________________________________________________________________________________
block_6_expand_BN (BatchNormali (None, 28, 28, 192) 768 block_6_expand[0][0]
__________________________________________________________________________________________________
block_6_expand_relu (Activation (None, 28, 28, 192) 0 block_6_expand_BN[0][0]
__________________________________________________________________________________________________
block_6_pad (ZeroPadding2D) (None, 29, 29, 192) 0 block_6_expand_relu[0][0]
__________________________________________________________________________________________________
block_6_depthwise (DepthwiseCon (None, 14, 14, 192) 1728 block_6_pad[0][0]
__________________________________________________________________________________________________
block_6_depthwise_BN (BatchNorm (None, 14, 14, 192) 768 block_6_depthwise[0][0]
__________________________________________________________________________________________________
block_6_depthwise_relu (Activat (None, 14, 14, 192) 0 block_6_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_6_project (Conv2D) (None, 14, 14, 64) 12288 block_6_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_6_project_BN (BatchNormal (None, 14, 14, 64) 256 block_6_project[0][0]
__________________________________________________________________________________________________
block_7_expand (Conv2D) (None, 14, 14, 384) 24576 block_6_project_BN[0][0]
__________________________________________________________________________________________________
block_7_expand_BN (BatchNormali (None, 14, 14, 384) 1536 block_7_expand[0][0]
__________________________________________________________________________________________________
block_7_expand_relu (Activation (None, 14, 14, 384) 0 block_7_expand_BN[0][0]
__________________________________________________________________________________________________
block_7_depthwise (DepthwiseCon (None, 14, 14, 384) 3456 block_7_expand_relu[0][0]
__________________________________________________________________________________________________
block_7_depthwise_BN (BatchNorm (None, 14, 14, 384) 1536 block_7_depthwise[0][0]
__________________________________________________________________________________________________
block_7_depthwise_relu (Activat (None, 14, 14, 384) 0 block_7_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_7_project (Conv2D) (None, 14, 14, 64) 24576 block_7_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_7_project_BN (BatchNormal (None, 14, 14, 64) 256 block_7_project[0][0]
__________________________________________________________________________________________________
block_7_add (Add) (None, 14, 14, 64) 0 block_6_project_BN[0][0]
block_7_project_BN[0][0]
__________________________________________________________________________________________________
block_8_expand (Conv2D) (None, 14, 14, 384) 24576 block_7_add[0][0]
__________________________________________________________________________________________________
block_8_expand_BN (BatchNormali (None, 14, 14, 384) 1536 block_8_expand[0][0]
__________________________________________________________________________________________________
block_8_expand_relu (Activation (None, 14, 14, 384) 0 block_8_expand_BN[0][0]
__________________________________________________________________________________________________
block_8_depthwise (DepthwiseCon (None, 14, 14, 384) 3456 block_8_expand_relu[0][0]
__________________________________________________________________________________________________
block_8_depthwise_BN (BatchNorm (None, 14, 14, 384) 1536 block_8_depthwise[0][0]
__________________________________________________________________________________________________
block_8_depthwise_relu (Activat (None, 14, 14, 384) 0 block_8_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_8_project (Conv2D) (None, 14, 14, 64) 24576 block_8_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_8_project_BN (BatchNormal (None, 14, 14, 64) 256 block_8_project[0][0]
__________________________________________________________________________________________________
block_8_add (Add) (None, 14, 14, 64) 0 block_7_add[0][0]
block_8_project_BN[0][0]
__________________________________________________________________________________________________
block_9_expand (Conv2D) (None, 14, 14, 384) 24576 block_8_add[0][0]
__________________________________________________________________________________________________
block_9_expand_BN (BatchNormali (None, 14, 14, 384) 1536 block_9_expand[0][0]
__________________________________________________________________________________________________
block_9_expand_relu (Activation (None, 14, 14, 384) 0 block_9_expand_BN[0][0]
__________________________________________________________________________________________________
block_9_depthwise (DepthwiseCon (None, 14, 14, 384) 3456 block_9_expand_relu[0][0]
__________________________________________________________________________________________________
block_9_depthwise_BN (BatchNorm (None, 14, 14, 384) 1536 block_9_depthwise[0][0]
__________________________________________________________________________________________________
block_9_depthwise_relu (Activat (None, 14, 14, 384) 0 block_9_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_9_project (Conv2D) (None, 14, 14, 64) 24576 block_9_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_9_project_BN (BatchNormal (None, 14, 14, 64) 256 block_9_project[0][0]
__________________________________________________________________________________________________
block_9_add (Add) (None, 14, 14, 64) 0 block_8_add[0][0]
block_9_project_BN[0][0]
__________________________________________________________________________________________________
block_10_expand (Conv2D) (None, 14, 14, 384) 24576 block_9_add[0][0]
__________________________________________________________________________________________________
block_10_expand_BN (BatchNormal (None, 14, 14, 384) 1536 block_10_expand[0][0]
__________________________________________________________________________________________________
block_10_expand_relu (Activatio (None, 14, 14, 384) 0 block_10_expand_BN[0][0]
__________________________________________________________________________________________________
block_10_depthwise (DepthwiseCo (None, 14, 14, 384) 3456 block_10_expand_relu[0][0]
__________________________________________________________________________________________________
block_10_depthwise_BN (BatchNor (None, 14, 14, 384) 1536 block_10_depthwise[0][0]
__________________________________________________________________________________________________
block_10_depthwise_relu (Activa (None, 14, 14, 384) 0 block_10_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_10_project (Conv2D) (None, 14, 14, 96) 36864 block_10_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_10_project_BN (BatchNorma (None, 14, 14, 96) 384 block_10_project[0][0]
__________________________________________________________________________________________________
block_11_expand (Conv2D) (None, 14, 14, 576) 55296 block_10_project_BN[0][0]
__________________________________________________________________________________________________
block_11_expand_BN (BatchNormal (None, 14, 14, 576) 2304 block_11_expand[0][0]
__________________________________________________________________________________________________
block_11_expand_relu (Activatio (None, 14, 14, 576) 0 block_11_expand_BN[0][0]
__________________________________________________________________________________________________
block_11_depthwise (DepthwiseCo (None, 14, 14, 576) 5184 block_11_expand_relu[0][0]
__________________________________________________________________________________________________
block_11_depthwise_BN (BatchNor (None, 14, 14, 576) 2304 block_11_depthwise[0][0]
__________________________________________________________________________________________________
block_11_depthwise_relu (Activa (None, 14, 14, 576) 0 block_11_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_11_project (Conv2D) (None, 14, 14, 96) 55296 block_11_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_11_project_BN (BatchNorma (None, 14, 14, 96) 384 block_11_project[0][0]
__________________________________________________________________________________________________
block_11_add (Add) (None, 14, 14, 96) 0 block_10_project_BN[0][0]
block_11_project_BN[0][0]
__________________________________________________________________________________________________
block_12_expand (Conv2D) (None, 14, 14, 576) 55296 block_11_add[0][0]
__________________________________________________________________________________________________
block_12_expand_BN (BatchNormal (None, 14, 14, 576) 2304 block_12_expand[0][0]
__________________________________________________________________________________________________
block_12_expand_relu (Activatio (None, 14, 14, 576) 0 block_12_expand_BN[0][0]
__________________________________________________________________________________________________
block_12_depthwise (DepthwiseCo (None, 14, 14, 576) 5184 block_12_expand_relu[0][0]
__________________________________________________________________________________________________
block_12_depthwise_BN (BatchNor (None, 14, 14, 576) 2304 block_12_depthwise[0][0]
__________________________________________________________________________________________________
block_12_depthwise_relu (Activa (None, 14, 14, 576) 0 block_12_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_12_project (Conv2D) (None, 14, 14, 96) 55296 block_12_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_12_project_BN (BatchNorma (None, 14, 14, 96) 384 block_12_project[0][0]
__________________________________________________________________________________________________
block_12_add (Add) (None, 14, 14, 96) 0 block_11_add[0][0]
block_12_project_BN[0][0]
__________________________________________________________________________________________________
block_13_expand (Conv2D) (None, 14, 14, 576) 55296 block_12_add[0][0]
__________________________________________________________________________________________________
block_13_expand_BN (BatchNormal (None, 14, 14, 576) 2304 block_13_expand[0][0]
__________________________________________________________________________________________________
block_13_expand_relu (Activatio (None, 14, 14, 576) 0 block_13_expand_BN[0][0]
__________________________________________________________________________________________________
block_13_pad (ZeroPadding2D) (None, 15, 15, 576) 0 block_13_expand_relu[0][0]
__________________________________________________________________________________________________
block_13_depthwise (DepthwiseCo (None, 7, 7, 576) 5184 block_13_pad[0][0]
__________________________________________________________________________________________________
block_13_depthwise_BN (BatchNor (None, 7, 7, 576) 2304 block_13_depthwise[0][0]
__________________________________________________________________________________________________
block_13_depthwise_relu (Activa (None, 7, 7, 576) 0 block_13_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_13_project (Conv2D) (None, 7, 7, 160) 92160 block_13_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_13_project_BN (BatchNorma (None, 7, 7, 160) 640 block_13_project[0][0]
__________________________________________________________________________________________________
block_14_expand (Conv2D) (None, 7, 7, 960) 153600 block_13_project_BN[0][0]
__________________________________________________________________________________________________
block_14_expand_BN (BatchNormal (None, 7, 7, 960) 3840 block_14_expand[0][0]
__________________________________________________________________________________________________
block_14_expand_relu (Activatio (None, 7, 7, 960) 0 block_14_expand_BN[0][0]
__________________________________________________________________________________________________
block_14_depthwise (DepthwiseCo (None, 7, 7, 960) 8640 block_14_expand_relu[0][0]
__________________________________________________________________________________________________
block_14_depthwise_BN (BatchNor (None, 7, 7, 960) 3840 block_14_depthwise[0][0]
__________________________________________________________________________________________________
block_14_depthwise_relu (Activa (None, 7, 7, 960) 0 block_14_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_14_project (Conv2D) (None, 7, 7, 160) 153600 block_14_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_14_project_BN (BatchNorma (None, 7, 7, 160) 640 block_14_project[0][0]
__________________________________________________________________________________________________
block_14_add (Add) (None, 7, 7, 160) 0 block_13_project_BN[0][0]
block_14_project_BN[0][0]
__________________________________________________________________________________________________
block_15_expand (Conv2D) (None, 7, 7, 960) 153600 block_14_add[0][0]
__________________________________________________________________________________________________
block_15_expand_BN (BatchNormal (None, 7, 7, 960) 3840 block_15_expand[0][0]
__________________________________________________________________________________________________
block_15_expand_relu (Activatio (None, 7, 7, 960) 0 block_15_expand_BN[0][0]
__________________________________________________________________________________________________
block_15_depthwise (DepthwiseCo (None, 7, 7, 960) 8640 block_15_expand_relu[0][0]
__________________________________________________________________________________________________
block_15_depthwise_BN (BatchNor (None, 7, 7, 960) 3840 block_15_depthwise[0][0]
__________________________________________________________________________________________________
block_15_depthwise_relu (Activa (None, 7, 7, 960) 0 block_15_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_15_project (Conv2D) (None, 7, 7, 160) 153600 block_15_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_15_project_BN (BatchNorma (None, 7, 7, 160) 640 block_15_project[0][0]
__________________________________________________________________________________________________
block_15_add (Add) (None, 7, 7, 160) 0 block_14_add[0][0]
block_15_project_BN[0][0]
__________________________________________________________________________________________________
block_16_expand (Conv2D) (None, 7, 7, 960) 153600 block_15_add[0][0]
__________________________________________________________________________________________________
block_16_expand_BN (BatchNormal (None, 7, 7, 960) 3840 block_16_expand[0][0]
__________________________________________________________________________________________________
block_16_expand_relu (Activatio (None, 7, 7, 960) 0 block_16_expand_BN[0][0]
__________________________________________________________________________________________________
block_16_depthwise (DepthwiseCo (None, 7, 7, 960) 8640 block_16_expand_relu[0][0]
__________________________________________________________________________________________________
block_16_depthwise_BN (BatchNor (None, 7, 7, 960) 3840 block_16_depthwise[0][0]
__________________________________________________________________________________________________
block_16_depthwise_relu (Activa (None, 7, 7, 960) 0 block_16_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_16_project (Conv2D) (None, 7, 7, 320) 307200 block_16_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_16_project_BN (BatchNorma (None, 7, 7, 320) 1280 block_16_project[0][0]
__________________________________________________________________________________________________
Conv_1 (Conv2D) (None, 7, 7, 1280) 409600 block_16_project_BN[0][0]
__________________________________________________________________________________________________
Conv_1_bn (BatchNormalization) (None, 7, 7, 1280) 5120 Conv_1[0][0]
__________________________________________________________________________________________________
out_relu (Activation) (None, 7, 7, 1280) 0 Conv_1_bn[0][0]
__________________________________________________________________________________________________
global_average_pooling2d (Globa (None, 1280) 0 out_relu[0][0]
__________________________________________________________________________________________________
Logits (Dense) (None, 1000) 1281000 global_average_pooling2d[0][0]
==================================================================================================
Total params: 3,538,984
Trainable params: 3,504,872
Non-trainable params: 34,112
这里顺便在CIFAR10数据集上面做个测试
# 数据准备
(x_train,y_train),(x_test,y_test)=tf.keras.datasets.cifar10.load_data()
# 归一化
x_train,x_test=x_train/255.0,x_test/255.0
# 转为独热编码
y_train=tf.keras.utils.to_categorical(y_train,N_CLASSES)
y_test=tf.keras.utils.to_categorical(y_test,N_CLASSES)
print(x_train.shape,y_train.shape)
print(x_test.shape,y_test.shape)
# 模型编译
adam=tf.keras.optimizers.Adam(1e-4)
model.compile(optimizers=adam,loss='categorical_crossentropy',
metrics=['accuracy'])
checkpoint_save_path = "./checkpoint/MobileNetV2.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
print('-------------load the model-----------------')
model.load_weights(checkpoint_save_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
save_weights_only=True,
save_best_only=True)
# 模型训练
history = model.fit(
x_train,
y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
validation_freq=1,
callbacks=[cp_callback]
)
Train on 50000 samples, validate on 10000 samples
Epoch 1/10
50000/50000 [==============================] - 41s 820us/sample - loss: 1.8836 - accuracy: 0.3120 - val_loss: 2.3478 - val_accuracy: 0.1000
Epoch 2/10
50000/50000 [==============================] - 26s 514us/sample - loss: 1.5163 - accuracy: 0.4518 - val_loss: 2.3763 - val_accuracy: 0.1000
Epoch 3/10
50000/50000 [==============================] - 26s 515us/sample - loss: 1.3114 - accuracy: 0.5330 - val_loss: 2.3848 - val_accuracy: 0.1000
Epoch 4/10
50000/50000 [==============================] - 26s 522us/sample - loss: 1.1583 - accuracy: 0.5962 - val_loss: 2.3829 - val_accuracy: 0.1000
Epoch 5/10
50000/50000 [==============================] - 27s 541us/sample - loss: 1.0650 - accuracy: 0.6338 - val_loss: 2.3881 - val_accuracy: 0.1000
Epoch 6/10
50000/50000 [==============================] - 26s 522us/sample - loss: 0.9768 - accuracy: 0.6569 - val_loss: 2.3847 - val_accuracy: 0.1000
Epoch 7/10
50000/50000 [==============================] - 27s 534us/sample - loss: 0.9006 - accuracy: 0.6867 - val_loss: 2.3762 - val_accuracy: 0.1000
Epoch 8/10
50000/50000 [==============================] - 27s 536us/sample - loss: 0.8803 - accuracy: 0.7079 - val_loss: 2.4225 - val_accuracy: 0.1000
Epoch 9/10
50000/50000 [==============================] - 26s 526us/sample - loss: 0.8036 - accuracy: 0.7257 - val_loss: 2.3862 - val_accuracy: 0.1532
Epoch 10/10
50000/50000 [==============================] - 27s 542us/sample - loss: 0.7600 - accuracy: 0.7411 - val_loss: 2.3336 - val_accuracy: 0.1951
References
Sandler M , Howard A , Zhu M , et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018.MobileNetV2 代码复现,网络解析,附Tensorflow完整代码
神经网络学习小记录25——MobileNetV2模型的复现详解
【精读AI论文】谷歌轻量化网络MobileNet V2(附MobileNetV2代码讲解)