驱动开发:内核枚举IoTimer定时器

简介: 今天继续分享内核枚举系列知识,这次我们来学习如何通过代码的方式枚举内核`IoTimer`定时器,内核定时器其实就是在内核中实现的时钟,该定时器的枚举非常简单,因为在`IoInitializeTimer`初始化部分就可以找到`IopTimerQueueHead`地址,该变量内存储的就是定时器的链表头部。枚举IO定时器的案例并不多见,即便有也是无法使用过时的,此教程学到肯定就是赚到了。

今天继续分享内核枚举系列知识,这次我们来学习如何通过代码的方式枚举内核IoTimer定时器,内核定时器其实就是在内核中实现的时钟,该定时器的枚举非常简单,因为在IoInitializeTimer初始化部分就可以找到IopTimerQueueHead地址,该变量内存储的就是定时器的链表头部。枚举IO定时器的案例并不多见,即便有也是无法使用过时的,此教程学到肯定就是赚到了。

image.png

枚举Io定时器过程是这样的:

  • 1.找到IoInitializeTimer函数,该函数可以通过MmGetSystemRoutineAddress得到。
  • 2.找到地址以后,我们向下增加0xFF偏移量,并搜索特征定位到IopTimerQueueHead链表头。
  • 3.将链表头转换为IO_TIMER结构体,并循环链表头输出。

这里解释一下为什么要找IoInitializeTimer这个函数他是一个初始化函数,既然是初始化里面一定会涉及到链表的存储问题,找到他就能找到定时器链表基址,该函数的定义如下。

NTSTATUS 
  IoInitializeTimer(
    IN PDEVICE_OBJECT  DeviceObject,     // 设备对象指针
    IN PIO_TIMER_ROUTINE  TimerRoutine,  // 定时器例程
    IN PVOID  Context                    // 传给定时器例程的函数
    );

接着我们需要得到IO定时器的结构定义,在DEVICE_OBJECT设备对象指针中存在一个Timer属性。

lyshark.com: kd> dt _DEVICE_OBJECT
ntdll!_DEVICE_OBJECT
   +0x000 Type             : Int2B
   +0x002 Size             : Uint2B
   +0x004 ReferenceCount   : Int4B
   +0x008 DriverObject     : Ptr64 _DRIVER_OBJECT
   +0x010 NextDevice       : Ptr64 _DEVICE_OBJECT
   +0x018 AttachedDevice   : Ptr64 _DEVICE_OBJECT
   +0x020 CurrentIrp       : Ptr64 _IRP
   +0x028 Timer            : Ptr64 _IO_TIMER
   +0x030 Flags            : Uint4B
   +0x034 Characteristics  : Uint4B
   +0x038 Vpb              : Ptr64 _VPB
   +0x040 DeviceExtension  : Ptr64 Void
   +0x048 DeviceType       : Uint4B
   +0x04c StackSize        : Char
   +0x050 Queue            : <anonymous-tag>
   +0x098 AlignmentRequirement : Uint4B
   +0x0a0 DeviceQueue      : _KDEVICE_QUEUE
   +0x0c8 Dpc              : _KDPC
   +0x108 ActiveThreadCount : Uint4B
   +0x110 SecurityDescriptor : Ptr64 Void
   +0x118 DeviceLock       : _KEVENT
   +0x130 SectorSize       : Uint2B
   +0x132 Spare1           : Uint2B
   +0x138 DeviceObjectExtension : Ptr64 _DEVOBJ_EXTENSION
   +0x140 Reserved         : Ptr64 Void

image.png

这里的这个+0x028 Timer定时器是一个结构体_IO_TIMER其就是IO定时器的所需结构体。

lyshark.com: kd> dt _IO_TIMER
ntdll!_IO_TIMER
   +0x000 Type             : Int2B
   +0x002 TimerFlag        : Int2B
   +0x008 TimerList        : _LIST_ENTRY
   +0x018 TimerRoutine     : Ptr64     void 
   +0x020 Context          : Ptr64 Void
   +0x028 DeviceObject     : Ptr64 _DEVICE_OBJECT

image.png

如上方的基础知识有了也就够了,接着就是实际开发部分,首先我们需要编写一个GetIoInitializeTimerAddress()函数,让该函数可以定位到IoInitializeTimer所在内核中的基地址上面,具体实现调用代码如下所示。

#include <ntifs.h>

// 得到IoInitializeTimer基址
// By: LyShark 内核开发系列教程
PVOID GetIoInitializeTimerAddress()
{
    PVOID VariableAddress = 0;
    UNICODE_STRING uioiTime = { 0 };

    RtlInitUnicodeString(&uioiTime, L"IoInitializeTimer");
    VariableAddress = (PVOID)MmGetSystemRoutineAddress(&uioiTime);
    if (VariableAddress != 0)
    {
        return VariableAddress;
    }
    return 0;
}

VOID UnDriver(PDRIVER_OBJECT driver)
{
    DbgPrint(("Uninstall Driver Is OK \n"));
}

NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
    DbgPrint(("hello lyshark.com \n"));

    // 得到基址
    PUCHAR IoInitializeTimer = GetIoInitializeTimerAddress();
    DbgPrint("IoInitializeTimer Address = %p \n", IoInitializeTimer);

    Driver->DriverUnload = UnDriver;
    return STATUS_SUCCESS;
}

运行这个驱动程序,然后对比下是否一致:

image.png

接着我们在反汇编代码中寻找IoTimerQueueHead,此处在LyShark系统内这个偏移位置是nt!IoInitializeTimer+0x5d 具体输出位置如下。

lyshark.com: kd> uf IoInitializeTimer

nt!IoInitializeTimer+0x5d:
fffff805`74b85bed 488d5008        lea     rdx,[rax+8]
fffff805`74b85bf1 48897018        mov     qword ptr [rax+18h],rsi
fffff805`74b85bf5 4c8d054475e0ff  lea     r8,[nt!IopTimerLock (fffff805`7498d140)]
fffff805`74b85bfc 48897820        mov     qword ptr [rax+20h],rdi
fffff805`74b85c00 488d0dd9ddcdff  lea     rcx,[nt!IopTimerQueueHead (fffff805`748639e0)]
fffff805`74b85c07 e8141e98ff      call    nt!ExInterlockedInsertTailList (fffff805`74507a20)
fffff805`74b85c0c 33c0            xor     eax,eax

在WinDBG中标注出颜色lea rcx,[nt!IopTimerQueueHead (fffff805748639e0)]更容易看到。

image.png

接着就是通过代码实现对此处的定位,定位我们就采用特征码搜索的方式,如下代码是特征搜索部分。

  • StartSearchAddress 代表开始位置
  • EndSearchAddress 代表结束位置,粗略计算0xff就可以定位到了。
#include <ntifs.h>

// 得到IoInitializeTimer基址
// By: LyShark 内核开发系列教程
PVOID GetIoInitializeTimerAddress()
{
    PVOID VariableAddress = 0;
    UNICODE_STRING uioiTime = { 0 };

    RtlInitUnicodeString(&uioiTime, L"IoInitializeTimer");
    VariableAddress = (PVOID)MmGetSystemRoutineAddress(&uioiTime);
    if (VariableAddress != 0)
    {
        return VariableAddress;
    }
    return 0;
}

VOID UnDriver(PDRIVER_OBJECT driver)
{
    DbgPrint(("Uninstall Driver Is OK \n"));
}

NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
    DbgPrint(("hello lyshark.com \n"));

    // 得到基址
    PUCHAR IoInitializeTimer = GetIoInitializeTimerAddress();
    DbgPrint("IoInitializeTimer Address = %p \n", IoInitializeTimer);

    INT32 iOffset = 0;
    PLIST_ENTRY IoTimerQueueHead = NULL;

    PUCHAR StartSearchAddress = IoInitializeTimer;
    PUCHAR EndSearchAddress = IoInitializeTimer + 0xFF;
    UCHAR v1 = 0, v2 = 0, v3 = 0;

    for (PUCHAR i = StartSearchAddress; i < EndSearchAddress; i++)
    {
        if (MmIsAddressValid(i) && MmIsAddressValid(i + 1) && MmIsAddressValid(i + 2))
        {
            v1 = *i;
            v2 = *(i + 1);
            v3 = *(i + 2);

            // 三个特征码
            if (v1 == 0x48 && v2 == 0x8d && v3 == 0x0d)
            {
                memcpy(&iOffset, i + 3, 4);
                IoTimerQueueHead = (PLIST_ENTRY)(iOffset + (ULONG64)i + 7);
                DbgPrint("IoTimerQueueHead = %p \n", IoTimerQueueHead);
                break;
            }
        }
    }

    Driver->DriverUnload = UnDriver;
    return STATUS_SUCCESS;
}

搜索三个特征码v1 == 0x48 && v2 == 0x8d && v3 == 0x0d从而得到内存位置,运行驱动对比下。

  • 运行代码会取出lea指令后面的操作数,而不是取出lea指令的内存地址。

image.png

最后一步就是枚举部分,我们需要前面提到的IO_TIMER结构体定义。

  • PIO_TIMER Timer = CONTAINING_RECORD(NextEntry, IO_TIMER, TimerList) 得到结构体,循环输出即可。
// By: LyShark 内核开发系列教程
// https://www.cnblogs.com/LyShark/articles/16784393.html
#include <ntddk.h>
#include <ntstrsafe.h>

typedef struct _IO_TIMER
{
  INT16        Type;
  INT16        TimerFlag;
  LONG32       Unknown;
  LIST_ENTRY   TimerList;
  PVOID        TimerRoutine;
  PVOID        Context;
  PVOID        DeviceObject;
}IO_TIMER, *PIO_TIMER;


// 得到IoInitializeTimer基址
PVOID GetIoInitializeTimerAddress()
{
  PVOID VariableAddress = 0;
  UNICODE_STRING uioiTime = { 0 };

  RtlInitUnicodeString(&uioiTime, L"IoInitializeTimer");
  VariableAddress = (PVOID)MmGetSystemRoutineAddress(&uioiTime);
  if (VariableAddress != 0)
  {
    return VariableAddress;
  }
  return 0;
}

VOID UnDriver(PDRIVER_OBJECT driver)
{
  DbgPrint("卸载完成... \n");
}

NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
  DbgPrint(("hello lyshark.com \n"));

  // 得到基址
  PUCHAR IoInitializeTimer = GetIoInitializeTimerAddress();
  DbgPrint("IoInitializeTimer Address = %p \n", IoInitializeTimer);

  // 搜索IoTimerQueueHead地址
  /*
    nt!IoInitializeTimer+0x5d:
    fffff806`349963cd 488d5008        lea     rdx,[rax+8]
    fffff806`349963d1 48897018        mov     qword ptr [rax+18h],rsi
    fffff806`349963d5 4c8d05648de0ff  lea     r8,[nt!IopTimerLock (fffff806`3479f140)]
    fffff806`349963dc 48897820        mov     qword ptr [rax+20h],rdi
    fffff806`349963e0 488d0d99f6cdff  lea     rcx,[nt!IopTimerQueueHead (fffff806`34675a80)]
    fffff806`349963e7 e8c43598ff      call    nt!ExInterlockedInsertTailList (fffff806`343199b0)
    fffff806`349963ec 33c0            xor     eax,eax
  */
  INT32 iOffset = 0;
  PLIST_ENTRY IoTimerQueueHead = NULL;

  PUCHAR StartSearchAddress = IoInitializeTimer;
  PUCHAR EndSearchAddress = IoInitializeTimer + 0xFF;
  UCHAR v1 = 0, v2 = 0, v3 = 0;

  for (PUCHAR i = StartSearchAddress; i < EndSearchAddress; i++)
  {
    if (MmIsAddressValid(i) && MmIsAddressValid(i + 1) && MmIsAddressValid(i + 2))
    {
      v1 = *i;
      v2 = *(i + 1);
      v3 = *(i + 2);

      // fffff806`349963e0 48 8d 0d 99 f6 cd ff  lea rcx,[nt!IopTimerQueueHead (fffff806`34675a80)]
      if (v1 == 0x48 && v2 == 0x8d && v3 == 0x0d)
      {
        memcpy(&iOffset, i + 3, 4);
        IoTimerQueueHead = (PLIST_ENTRY)(iOffset + (ULONG64)i + 7);
        DbgPrint("IoTimerQueueHead = %p \n", IoTimerQueueHead);
        break;
      }
    }
  }

  // 枚举列表
  KIRQL OldIrql;

  // 获得特权级
  OldIrql = KeRaiseIrqlToDpcLevel();

  if (IoTimerQueueHead && MmIsAddressValid((PVOID)IoTimerQueueHead))
  {
    PLIST_ENTRY NextEntry = IoTimerQueueHead->Flink;
    while (MmIsAddressValid(NextEntry) && NextEntry != (PLIST_ENTRY)IoTimerQueueHead)
    {
      PIO_TIMER Timer = CONTAINING_RECORD(NextEntry, IO_TIMER, TimerList);

      if (Timer && MmIsAddressValid(Timer))
      {
        DbgPrint("IO对象地址: %p \n", Timer);
      }
      NextEntry = NextEntry->Flink;
    }
  }

  // 恢复特权级
  KeLowerIrql(OldIrql);

  Driver->DriverUnload = UnDriver;
  return STATUS_SUCCESS;
}

运行这段源代码,并可得到以下输出,由于没有IO定时器所以输出结果是空的:

image.png

至此IO定时器的枚举就介绍完了,在教程中你已经学会了使用特征码定位这门技术,相信你完全可以输出内核中想要得到的任何结构体。

目录
相关文章
|
5月前
LabVIEW编程NI 6602计数器DMA冲突例程与相关资料
LabVIEW编程NI 6602计数器DMA冲突例程与相关资料
45 7
|
5月前
|
算法 Linux
易懂的方式讲解ARM中断原理以及中断嵌套方法
易懂的方式讲解ARM中断原理以及中断嵌套方法
264 0
|
10月前
|
监控 安全 API
6.9 Windows驱动开发:内核枚举进线程ObCall回调
在笔者上一篇文章`《内核枚举Registry注册表回调》`中我们通过特征码定位实现了对注册表回调的枚举,本篇文章`LyShark`将教大家如何枚举系统中的`ProcessObCall`进程回调以及`ThreadObCall`线程回调,之所以放在一起来讲解是因为这两中回调在枚举是都需要使用通用结构体`_OB_CALLBACK`以及`_OBJECT_TYPE`所以放在一起来讲解最好不过。
130 1
6.9 Windows驱动开发:内核枚举进线程ObCall回调
|
10月前
|
存储 API 开发者
6.7 Windows驱动开发:内核枚举LoadImage映像回调
在笔者之前的文章`《内核特征码搜索函数封装》`中我们封装实现了特征码定位功能,本章将继续使用该功能,本次我们需要枚举内核`LoadImage`映像回调,在Win64环境下我们可以设置一个`LoadImage`映像加载通告回调,当有新驱动或者DLL被加载时,回调函数就会被调用从而执行我们自己的回调例程,映像回调也存储在数组里,枚举时从数组中读取值之后,需要进行位运算解密得到地址。
51 1
6.7 Windows驱动开发:内核枚举LoadImage映像回调
|
存储 API Windows
驱动开发:内核中进程与句柄互转
在内核开发中,经常需要进行进程和句柄之间的互相转换。进程通常由一个唯一的进程标识符(PID)来标识,而句柄是指对内核对象的引用。在Windows内核中,`EProcess`结构表示一个进程,而HANDLE是一个句柄。为了实现进程与句柄之间的转换,我们需要使用一些内核函数。对于进程PID和句柄的互相转换,可以使用函数如`OpenProcess`和`GetProcessId`。OpenProcess函数接受一个PID作为参数,并返回一个句柄。GetProcessId函数接受一个句柄作为参数,并返回该进程的PID。
361 0
|
缓存 API C语言
|
存储
驱动开发:内核枚举LoadImage映像回调
在笔者之前的文章`《驱动开发:内核特征码搜索函数封装》`中我们封装实现了特征码定位功能,本章将继续使用该功能,本次我们需要枚举内核`LoadImage`映像回调,在Win64环境下我们可以设置一个`LoadImage`映像加载通告回调,当有新驱动或者DLL被加载时,回调函数就会被调用从而执行我们自己的回调例程,映像回调也存储在数组里,枚举时从数组中读取值之后,需要进行位运算解密得到地址。
292 1
驱动开发:内核枚举LoadImage映像回调
【嵌入式】窗户看门狗定时器概念详解+例题解析
题目 嵌入式系统使用WWDG窗口看门狗模块监视用户程序运行,假设看门狗的喂狗时间为20ms,PCLK1频率为36MHz,WDGTB[1:0]=10b。请计算看门狗的定时计数值(给出计算过程),并写出看门狗的初始化函数(注:使用寄存器方式程序)
426 0
|
存储 API 数据安全/隐私保护
驱动开发:内核枚举DpcTimer定时器
在笔者上一篇文章`《驱动开发:内核枚举IoTimer定时器》`中我们通过`IoInitializeTimer`这个API函数为跳板,向下扫描特征码获取到了`IopTimerQueueHead`也就是IO定时器的队列头,本章学习的枚举DPC定时器依然使用特征码扫描,唯一不同的是在新版系统中DPC是被异或加密的,想要找到正确的地址,只是需要在找到DPC表头时进行解密操作即可。
314 0
驱动开发:内核枚举DpcTimer定时器
|
API
驱动开发:内核枚举驱动内线程(答疑篇)
这篇文章比较特殊,是一篇穿插答疑文章,由于刚好在前一篇教程`《驱动开发:内核枚举PspCidTable句柄表》`整理了枚举句柄表的知识点,正好这个知识点能解决一个问题,事情是这样的有一个粉丝求助了一个问题,想要枚举出驱动中活动的线程信息,此功能我并没有尝试过当时也只是说了一个大致思路,今天想具体聊一聊这个话题,也想聊一聊自己对粉丝们的想法。
307 0
驱动开发:内核枚举驱动内线程(答疑篇)