【VLDB】融合transformer和对抗学习的多变量异常检测算法TranAD论文和代码解读

简介: # 一、前言今天的文章来自VLDBTranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data![](https://ata2-img.oss-cn-zhangjiakou.aliyuncs.com/neweditor/10c1f546-c86d-4bec-b64c-7366

一、前言

今天的文章来自VLDB

TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data

二、问题

在文章中提出了对于多变量异常检测的几个有挑战性的问题

  1. 缺乏异常的label
  2. 大数据量
  3. 在现实应用中需要尽可能少的推理时间(实时速度要求高)

在本文中,提出了基于transformer的模型TranAD,该模型使用基于注意力机制的序列编码器,利用数据中更广泛的时间趋势快速推断。TranAD使用基于score的自适应来实现鲁棒的多模态特征提取以及通过adversarial training以获得稳定性。此外,模型引入元学习(MAML)允许我们使用有限的数据来训练模型。

三、方法

3.1 问题定义

一个时间序列

因为是多变量时间序列,每一个X是一个大小为m的向量,即该序列有m个特征。

该工作定义了两种任务

  1. Anomaly Detection(检测):给予一个序列来预测目前时刻的异常情况(0或者1),1代表该数据点是异常的。
  2. Anomaly Diagnosis(诊断): 文中这块用denote which of the modes of the datapoint at the -th timestamp are anomalous.来描述,其实就是判断是哪几个维度的特征(mode)导致的实体的异常,诊断到维度模式的程度。

3.2 数据预处理

对数据做normalize,数据的保存形式,是一个实体一个npy文件,维度是(n, featureNum)

对数据进行滑窗,这里对于windowSize之前的数据并不舍去,而是用前面的数据直接复制,代码如下:

    windows = []; w_size = model.n_window
    for i, g in enumerate(data): 
        if i >= w_size: w = data[i-w_size:i]
        else: w = torch.cat([data[0].repeat(w_size-i, 1), data[0:i]])

3.3 模型

先看一下transformer的模型图。

模型本身和TranAD除了有两个decoder其他基本上完全一样,这里结构不赘述了,具体看

TranAD也省去了decoder中feed forward后的add&Norm,softmax也更改为sigmoid,文中提到sigmoid是把输出的数据拟合到输入数据的归一化状态中,即【0, 1】范围内。

这个图其实十分清晰,这个方法最大的创新不在模型本身,甚至模型没什么改动,主要引入了对抗训练的思想
解释下其中的变量

  • W为输入的窗口数据(前面数据预处理页提到了窗口数据的生成)
  • Focus Score是和W一样维度的变量,在第一阶段为0矩阵,第二阶段是通过W和O1的计算得出
  • C W的最后一个窗口数据

这个C变量,文中这样说。

其实看给的代码最好理解

    elif 'TranAD' in model.name:
        l = nn.MSELoss(reduction = 'none')
        data_x = torch.DoubleTensor(data); dataset = TensorDataset(data_x, data_x)
        bs = model.batch if training else len(data)
        dataloader = DataLoader(dataset, batch_size = bs)
        n = epoch + 1; w_size = model.n_window
        l1s, l2s = [], []
        if training:
            for d, _ in dataloader:
                local_bs = d.shape[0]
                window = d.permute(1, 0, 2) // 这个就是W
                elem = window[-1, :, :].view(1, local_bs, feats)  // 这个就是C
                z = model(window, elem)
                l1 = l(z, elem) if not isinstance(z, tuple) else (1 / n) * l(z[0], elem) + (1 - 1/n) * l(z[1], elem)
                if isinstance(z, tuple): z = z[1]
                l1s.append(torch.mean(l1).item())
                loss = torch.mean(l1)
                optimizer.zero_grad()
                loss.backward(retain_graph=True)
                optimizer.step()
            scheduler.step()
            tqdm.write(f'Epoch {epoch},\tL1 = {np.mean(l1s)}')
            return np.mean(l1s), optimizer.param_groups[0]['lr']

这里比较大的创新在于第一阶段和第二阶段的训练。

  • 第一阶段:为了更好的重构序列数据,和大部分encoder-decoder模型的作用没有什么不同
  • 第二阶段:引入对抗性训练的思想。

解读这个训练阶段之前,先把模型代码过一下。

class TranAD(nn.Module):
    def __init__(self, feats):
        super(TranAD, self).__init__()
        self.name = 'TranAD'
        self.lr = lr
        self.batch = 128
        self.n_feats = feats
        self.n_window = 10
        self.n = self.n_feats * self.n_window
        self.pos_encoder = PositionalEncoding(2 * feats, 0.1, self.n_window)
        encoder_layers = TransformerEncoderLayer(d_model=2 * feats, nhead=feats, dim_feedforward=16, dropout=0.1)
        self.transformer_encoder = TransformerEncoder(encoder_layers, 1)
        decoder_layers1 = TransformerDecoderLayer(d_model=2 * feats, nhead=feats, dim_feedforward=16, dropout=0.1)
        self.transformer_decoder1 = TransformerDecoder(decoder_layers1, 1)
        decoder_layers2 = TransformerDecoderLayer(d_model=2 * feats, nhead=feats, dim_feedforward=16, dropout=0.1)
        self.transformer_decoder2 = TransformerDecoder(decoder_layers2, 1)
        self.fcn = nn.Sequential(nn.Linear(2 * feats, feats), nn.Sigmoid())

    def encode(self, src, c, tgt):
        src = torch.cat((src, c), dim=2)
        src = src * math.sqrt(self.n_feats)
        src = self.pos_encoder(src)
        memory = self.transformer_encoder(src)
        tgt = tgt.repeat(1, 1, 2)
        return tgt, memory

    def forward(self, src, tgt):
        # Phase 1 - Without anomaly scores
        c = torch.zeros_like(src)
        x1 = self.fcn(self.transformer_decoder1(*self.encode(src, c, tgt)))
        # Phase 2 - With anomaly scores
        c = (x1 - src) ** 2
        x2 = self.fcn(self.transformer_decoder2(*self.encode(src, c, tgt)))
        return x1, x2

从代码可以看出来,虽然图中画的Window Encoder对于Decoder1和2来说是shared,但其实是分开的。

分别用transformer_decoder1和transformer_decoder2实现的。

第一阶段 Input Reconstruction

很多传统的encoder-decoder模型经常不能够获取short-term的趋势,会错过一些偏差很小的异常,为了解决这个问题,采用两个阶段的方式来进行重构。

在第一阶段,模型的目标是生成和输入窗口数据近似的reconstruction。对于这个推断的偏差,称之为focus score,有助于Transformer Encoder内部的注意力网络提取时间趋势,关注偏差高的子序列。(理解其实就是用与真实值的残差去拟合偏差高的序列,在第二阶段)

第一阶段下的focus score是0矩阵,与输入windows数据一致,输出O,与W计算L2 loss作为第一阶段的loss函数。

注意代码中的encode的部分,是将C和focus score直接concat再乘以sqrt(featureNum),之后再经过位置编码,其实文中只顺带说了一下而已,没有说为什么这么做,我个人倾向于为了将C和focus score信息放在一起,已concat常见的尝试揉在了一起。

第二阶段

将第一阶段O1与W的L2 loss作为focus score,在进行之前的步骤。这可以在第二阶段调整注意力权重,并为特定输入子序列提供更高的神经网络激活,以提取短期的时间趋势(这句话是文中说的,和我前面的那里理解基本上差不多)。

之后算是比较重点的地方了,引入对抗训练的思想,来设计第二阶段的loss这个地方十分的绕,建议大家读读原文的3.4 Offline Two-Phase Adversarial Training的Evolving Training Objective部分

  • 第二个decoder尽力去区分输入和第一阶段decoder1的重建,所以是max O2这个L2 loss(这里就会有疑问,decoder1的重建不是O1吗?为啥要max ||O2-W||2? 这里我从作者的角度去理解,其实他是一种条件近似转移,因为O1和O2再第一阶段都是近似W,那区别于第一阶段的decoder1的重建O1,其实就是区别于O2)
  • 第一个decoder尽力去通过创建一个接近W的O1来迷惑decoder2(其实就是想让这个focus score接近于0矩阵),其实就是min(W和O1),其实转移也就是min(W和O2),所以得到了下面这个公式

可以分解为:

再加上第一阶段的loss,总loss就是:

这里又对decoder1和decoder2做了明确的解释:

看代码理解

之后我们看下代码里的区别,代码里其实根本就没有算O2,只算了O1

在做反向传播,优化参数的时候也只算了L1的总loss,没有算L2


这里有个z的type判别,因为做了很多消融实验,不是最终的模型,最终就是后面那个L1loss,其中前面有个参数,是epoch+1,参数会随着训练轮数的增加,倒数慢慢变小,即前面的第一阶段的loss慢慢权重减小,而第二阶段的loss慢慢权重增大。

其实这也给出了一个我个人感觉非常合理的解释,因为第二阶段要附属于第一阶段的训练,应该先让O1和O2接近于W,之后才能去用对抗训练,这样才会让第二阶段训练有效,否则就混乱了。

现在再理解下这个,就完全明白了:


测试阶段,引入了阈值自动选择(POT,但代码中没有看到这的设置),以及score的计算

四、结果

对于异常的定义,是score大于阈值就是异常。


任意一个维度有异常就算作是异常,感觉这样描述本质上还是单序列的异常检测,没有从根本解决多变量的问题。

4.1 数据集


大部分常用数据集

4.2 结果

每一个维度都有reconstruction,并且每个维度都有对应的score,不得不说这个图示还是很清晰的,构建很清晰易懂。

后面还有各种实验,参数灵敏度、数据集等实验,这篇paper实验部分还是很满的,整体来说,工作量还是拉满的。

本文也对两种任务都做了实验,异常检测部分不用说了,常规操作,诊断部分采用 HitRate and NDCG两种指标进行root cause的检验。

五、总结和思考

  1. 对于代码,给出了每个对比模型和数据集,可以为后续实验做参考,并给出了整体消融实验的代码,代码还是很全面的,虽然有一些杂乱,但对于一个要做这个方向的同学来说,还是相当于巨人的肩膀的。
  2. 把transformer和对抗性训练放在一起,确实是很新颖的想法
  3. 在代码处O2部分为何省略存疑,以及第二阶段的loss,其实有点套的生硬,为何不都引到O1上,假设引到O1上,那loss1就只剩下L2 loss了,可能在公式上就并非这种对称了。
  4. 存疑的点就是 代码中在训练过程中并未对L2进行训练,这样的话O2是否像理论说的那样输出工作?
  5. 诊断的定义和诊断任务的探索,其实是有一些生硬的,并且也没完全说清楚,当然这篇文章标题是anomaly detection,其实并未将diagnosis算重点,所以这个也可以接受。
  6. 文章的标题是多变量的异常检测,其实虽然可以应用在多变量上,但实际还是单变量的异常来判别是否是多变量的整体实体的异常,本质还是用单变量问题解决多变量(这里可以探究一下,因为最终的score是由loss决定,而loss本身的维度是和输入的window数据一样的维度,意思就是每一个特征维度有一个score,所以其实得到的score还是单变量的score而并非实体的score,所以这里作者也没有探究多变量pattern的情况,可能存在多个变量异常,但只是一个跳变的pattern,不足以让整体异常的情况。)
  7. 代码里也没给出POT的相关代码。
目录
相关文章
|
3月前
|
机器学习/深度学习 人工智能 JSON
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
361 19
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
149 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
1月前
|
机器学习/深度学习 监控 算法
面向办公室屏幕监控系统的改进型四叉树屏幕变化检测算法研究
本文提出一种改进型四叉树数据结构模型,用于优化办公室屏幕监控系统。通过动态阈值调节、变化优先级索引及增量更新策略,显著降低计算复杂度并提升实时响应能力。实验表明,该算法在典型企业环境中将屏幕变化检测效率提升40%以上,同时减少资源消耗。其应用场景涵盖安全审计、工作效能分析及远程协作优化等,未来可结合深度学习实现更智能化的功能。
41 0
|
4月前
|
算法 数据可视化 开发者
为什么要学习数据结构与算法
今天,我向大家介绍一门非常重要的课程——《数据结构与算法》。这门课不仅是计算机学科的核心,更是每一位开发者从“小白”迈向“高手”的必经之路。
为什么要学习数据结构与算法
|
4月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
6月前
|
负载均衡 算法
架构学习:7种负载均衡算法策略
四层负载均衡包括数据链路层、网络层和应用层负载均衡。数据链路层通过修改MAC地址转发帧;网络层通过改变IP地址实现数据包转发;应用层有多种策略,如轮循、权重轮循、随机、权重随机、一致性哈希、响应速度和最少连接数均衡,确保请求合理分配到服务器,提升性能与稳定性。
1123 11
架构学习:7种负载均衡算法策略
|
5月前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
4月前
|
机器学习/深度学习 数据采集 算法
基于yolov2和googlenet网络的疲劳驾驶检测算法matlab仿真
本内容展示了基于深度学习的疲劳驾驶检测算法,包括算法运行效果预览(无水印)、Matlab 2022a 软件版本说明、部分核心程序(完整版含中文注释与操作视频)。理论部分详细阐述了疲劳检测原理,通过对比疲劳与正常状态下的特征差异,结合深度学习模型提取驾驶员面部特征变化。具体流程包括数据收集、预处理、模型训练与评估,使用数学公式描述损失函数和推理过程。课题基于 YOLOv2 和 GoogleNet,先用 YOLOv2 定位驾驶员面部区域,再由 GoogleNet 分析特征判断疲劳状态,提供高准确率与鲁棒性的检测方法。
|
5月前
|
机器学习/深度学习 人工智能 运维
[ICDE2024]多正常模式感知的频域异常检测算法MACE
[ICDE2024]多正常模式感知的频域异常检测算法MACE
|
7月前
|
机器学习/深度学习 自然语言处理 算法
调研180多篇论文,这篇综述终于把大模型做算法设计理清了
《A Systematic Survey on Large Language Models for Algorithm Design》综述了过去三年大型语言模型(LLMs)在算法设计中的应用。LLMs通过自然语言处理技术,助力生成、优化和验证算法,在优化、机器学习、数学推理等领域展现出广泛应用前景。尽管存在资源需求高、结果不确定等挑战,LLMs仍为算法设计带来新机遇。论文地址:https://arxiv.org/abs/2410.14716。
239 14