用积木讲运维,这样的IT人太会了

本文涉及的产品
对象存储 OSS,20GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
对象存储 OSS,恶意文件检测 1000次 1年
简介: 日志服务SLS提供数据采集、加工、分析、告警可视化与投递功能,为AIOps、大数据分析、运营服务、大数据安全等场景提供支撑,并能以搭积木的方式适配各类运维场景,辅助企业的IT决策。近日,日志服务SLS新增了两项重磅功能,有助于进一步提升研发、运维等场景数字化能力。

积木的拼搭,是件细致工作。用不同的积木,进行组合变换,小孩子可能会用积木搭高楼、搭汽车、搭公路,而IT人则选择通过搭建小积木,讲解可观测的大乾坤。

积木1-裁剪.png

大家所熟知的日志服务SLS不只是日志存储,更是一个一站式智能运维方案、可观测平台。它提供数据采集、加工、分析、告警可视化与投递功能,为AIOps、大数据分析、运营服务、大数据安全等场景提供支撑,并能以搭积木的方式适配各类运维场景,辅助企业的IT决策。

整体介绍-裁剪.png

近日,日志服务SLS新增了两项重磅功能,有助于进一步提升研发、运维等场景数字化能力。


一、日志服务架构的五大层级


相关报告指出,可观测性应用使企业机构能够利用其数据特征来获得竞争优势。如果能够在战略中予以规划并成功执行,可观测性应用将成为数据驱动型决策的最强大来源。

 

从架构上来看,日志服务SLS作为一站式的云原生可观测分析平台,按功能可划分为5大层级。最底层是数据采集与管道,再上一层是统一的可观测存储平台;然后是灵活的高性能计算引擎、智能化的Ops平台工具;最上层为各种开箱即用的功能。

架构图.png

1、数据采集与管道

业内公认,LogMetricTrace是全观测的三大支柱,通过搭建统一的观测系统,帮助运维人员在「事前」了解系统运行状态,「事中」快速定位故障,「事后」根因分析,做到进退有方,心中不慌。

 

SLS作为阿里巴巴、蚂蚁等日志中台产品,可以承载流量管道作用,为Log/Metric/Trace等数据提供大规模、低成本、实时平台化服务。


2、可观测存储平台

 

针对不同类型的数据,SLS提供了统一的存储能力,日志中枢(LogHub)支持与各种实时计算及服务对接,不但可以提供完整的进度监控,报警等功能,还能根据SDK/API实现自定义消费。此外,SLS具备强大的数据加工能力,广泛适用于数据的规整、富化、分发、汇总、重建索引等场景。

 

为了降低用户长周期存储的成本,SLS提供了冷存储功能。冷存储数据的存储费用很低,冷热数据转换也不会产生费用。

 

3、高性能计算引擎

 

SLS有不少互联网及企业客户,他们的业务系统会实时生成大量的埋点日志数据,这些数据往往需要长期保存,并且有离线计算或者实时计算的需求。

 

为了更好地服务这些客户, SLS提供了基于索引的高性能查询/分析能力,10亿级数据能够实现秒级返回。在语法上,SLS完全兼容SQL92标准,同时无缝对接主流(FlinkSparkStorm等)流计算产品。

 

4、智能化的 Ops 平台工具

 

SLS支持完整AIOps能力,能将可观测性数据全部接入一个平台中,再结合高性能数据查询引擎、关联分析能力,构建出一套云原生可观测平台。

 

用户可以基于此平台, 便捷高效地构建ITOpsSecOpsFinOps上层应用。再结合智能告警与响应中枢、基于AI的数据分析与异常巡检模块,企业IT系统神经中枢就大功告成了。

 

5、开箱即用的应用

 

SLS具备全托管、免运维,开箱即用的特性,提供DSL编排能力,内置200+函数,内置算子,能够快速实现二次开发。


Cloud Lens 复用了SLS 的存储分析平台,可以跨账号、跨区域统一采集访问日志、用量数据、监控指标等可观测数据,继而创建一个统一的场景化洞察大盘,帮助用户低门槛实现对云产品的可观测。


二、日志服务新增查询型规格以及Scan扫描模式

 

SLS现有的标准型规格(Standard Logstore),包含了SLS的完整功能集合,用户可以在标准型规格上实现对于数据的高性能查询与分析,进而用来适应各类业务场景。但实际上部分用户的业务场景并不倚重于分析能力,更多的还是依赖查询解决问题。

查询型-裁剪.png

哲学家老子曾说大道至简,同样地,产品也需要因事制宜做“减法”。因此,SLS新推出了查询型规格(Query Logstore),据统计,查询型规格索引流量费用相比标准型规格减少约72%,综合成本预计降低30% ,支持高性能查询,不支持分析统计。适合于debugging、问题诊断和审计溯源等重查询轻(或无)分析的场景。

 

在同一个project下,可以同时保有标准型及查询型规格Logstore,用户可根据不同业务需求灵活组合。SLS Query规格还支持存储冷热分层,在兼容查询功能的同时进一步降低成本。

在查询型规格之外,SLS今年在计算引擎上也实现了重大突破。索引查询/分析模式是一种schema-on-write的模式,更注重稳定和效率,相对应的需要提前建立索引,没有索引的字段就无法用于做查询分析,适用于明确有业务需求的日志字段。但是对于需求相对模糊的部分,往往会让用户陷入是应该注重业务需求提前建索引,还是应该平衡成本的纠结中。

Scan模式-裁剪.png

而SLS推出的扫描查询/分析模式(Schema on read),不需要用户提前建立索引,在无预建索引的情况下可以实现轻量级(性能/规模受限)的查询分析功能,相对应的成本也会大幅度降低。在同一份日志数据中,通过两种计算模式的灵活结合,SLS成功化身“端水大师”,实现对于业务需求和成本的兼具考虑。

 

结语:起早与贪黑齐飞,调休共假期待定,那是人肉运维。进入智能运维时代,运维人需要的是文能运维做观测,武能检索做分析。有了可以灵活组装底层能力的日志服务SLS,运维人可以进一步从繁重的事务中解脱出来。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
24天前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
54 2
|
1月前
|
运维 Linux Apache
,自动化运维成为现代IT基础设施的关键部分。Puppet是一款强大的自动化运维工具
【10月更文挑战第7天】随着云计算和容器化技术的发展,自动化运维成为现代IT基础设施的关键部分。Puppet是一款强大的自动化运维工具,通过定义资源状态和关系,确保系统始终处于期望配置状态。本文介绍Puppet的基本概念、安装配置及使用示例,帮助读者快速掌握Puppet,实现高效自动化运维。
52 4
|
1月前
|
运维 Kubernetes 监控
提升运维效率:容器化技术在现代IT基础设施中的应用
本文将探讨容器化技术如何优化企业的IT基础设施,提高部署效率和资源利用率。我们将深入分析容器技术的优势、实现步骤以及在实际运维中的应用场景。通过实例展示,帮助读者更好地理解并应用这一前沿技术,助力企业实现高效运维。
|
7天前
|
机器学习/深度学习 数据采集 人工智能
智能化运维在现代IT基础设施中的应用与价值####
本文探讨了智能化运维(AIOps)在现代IT基础设施管理中的实际应用、面临的挑战及其带来的深远影响。通过引入先进的算法和机器学习模型,智能化运维不仅提高了故障检测与响应的速度,还显著优化了资源配置,降低了运营成本,为企业数字化转型提供了强有力的技术支撑。 ####
|
18天前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI驱动下的IT运维革命###
本文探讨了人工智能(AI)技术在IT运维领域的创新应用,强调其在提升效率、预防故障及优化资源配置中的关键作用,揭示了智能运维的新趋势。 ###
|
14天前
|
机器学习/深度学习 人工智能 运维
智能化运维:提升IT服务效率的新引擎###
本文深入浅出地探讨了智能化运维(AIOps)如何革新传统IT运维模式,通过大数据、机器学习与自动化技术,实现故障预警、快速定位与处理,从而显著提升IT服务的稳定性和效率。不同于传统运维依赖人工响应,AIOps强调预测性维护与自动化流程,为企业数字化转型提供强有力的支撑。 ###
|
28天前
|
人工智能 运维 监控
智能化运维:AI在IT运维中的挑战与机遇###
本文探讨了人工智能(AI)技术在IT运维领域的应用,重点分析了AI如何提升运维效率、减少故障恢复时间,并预测未来发展趋势。通过具体案例展示了AI在实际运维中的应用效果,同时指出当前面临的挑战和解决方案,为读者提供一个全面了解智能化运维的视角。 ###
|
27天前
|
机器学习/深度学习 数据采集 人工智能
智能化运维:AI在IT运维中的应用探索###
随着信息技术的飞速发展,传统的IT运维模式正面临着前所未有的挑战。本文旨在探讨人工智能(AI)技术如何赋能IT运维,通过智能化手段提升运维效率、降低故障率,并为企业带来更加稳定高效的服务体验。我们将从AI运维的概念入手,深入分析其在故障预测、异常检测、自动化处理等方面的应用实践,以及面临的挑战与未来发展趋势。 ###
|
8天前
|
机器学习/深度学习 运维 监控
智能运维在现代IT架构中的转型之路####
【10月更文挑战第29天】 本文旨在探讨智能运维(AIOps)如何成为现代IT架构不可或缺的一部分,通过分析其核心价值、关键技术及实践案例,揭示AIOps在提升系统稳定性、优化资源配置及加速故障响应中的关键作用。不同于传统运维模式的被动响应,智能运维强调预测性维护与自动化处理,为企业数字化转型提供强有力的技术支撑。 ####
34 0
|
1月前
|
运维 Prometheus 监控
运维中的自动化实践每月一次的系统维护曾经是许多企业的噩梦。不仅因为停机时间长,更因为手动操作容易出错。然而,随着自动化工具的引入,这一切正在悄然改变。本文将探讨自动化在IT运维中的重要性及其具体应用。
在当今信息技术飞速发展的时代,企业对系统的稳定性和效率要求越来越高。传统的手动运维方式已经无法满足现代企业的需求。自动化技术的引入不仅提高了运维效率,还显著降低了出错风险。本文通过几个实际案例,展示了自动化在IT运维中的具体应用,包括自动化部署、监控告警和故障排除等方面,旨在为读者提供一些实用的参考。