RFSoC应用笔记 - RF数据转换器 -06- RFSoC关键配置之RF-ADC内部解析(4.1)

简介: RFSoC应用笔记 - RF数据转换器 -06- RFSoC关键配置之RF-ADC内部解析

前言


RFSoC中最重要的部分是射频直采ADC和DAC的配置,因此了解内部相关原理结构可以帮助我们更好理解相关功能配置参数含义。本文参考官方手册,主要对RFSoC ADC的可编程逻辑数据接口、多频带操作、以及奈奎斯特区的操作进行介绍。

RF-ADC 可编程逻辑数据接口


RF-ADC 块和 PL 之间的数据接口通过使用 AXI4-Stream 协议的并行数据流实现。 这些数据流通过FIFO 输出,在用户应用程序和 RF-ADC 块之间提供灵活的接口。 对于第 3 代,最大接口宽度为 192 位,最多代表 12 个16 位小端字。数据流和相关的 FIFO 具有可配置的字数,可以灵活地在字数和时钟频率之间进行选择,以与 PL 设计接口。 每个 tile 有四个流,命名约定是 mXY_axis,其中 X 代表 RF-ADC tile 编号,Y 代表从该 tile 输出的流 (FIFO)。 下图显示了接口。

image.png

接口数据格式


数据流代表真实数据或 I/Q 数据,具体取决于 RF-ADC 块配置。 对于双 RF-ADC 块,给定的流是实数,I 或 Q。如果 RF-ADC 配置有 I/Q 输出数据,则具有偶数的流代表 I 数据,具有奇数的流代表 Q 数据。 这些双实数和 I/Q 配置显示在 RF-ADC IP 配置中。

对于四路 RF-ADC 块,给定的流要么是真实的,要么是 I/Q 交错的。 如果 RF-ADC 配置有 I/Q 输出数据,则流的偶数样本代表 I 数据,奇数样本代表 Q 数据。 这些 Quad real 和 I/Q 配置将在以下部分中进行说明。

RF-ADC 接口数据和时钟速率


每个通道到 PL 的总数据速率由许多因素决定,RF-ADC 采样率、抽取因子和 I/Q/Real 数据格式。FIFO 通过允许更改每个时钟的字数,提供了一种将此数据速率与 PL 设计的时钟频率相连接的方法。唯一的要求是字数和时钟速率相结合,以匹配 RF-ADC 的输出数据速率和抽取率(如果启用)。

一个 tile 中的所有 RF-ADC 共享一个公共接口时钟频率。 这由以下等式显示,其中 2G_IQMode 对于 Quad RF-ADC tile 设置为 2,I/Q 模式启用,否则设置为 1。

image.png

内核根据 RF-ADC 采样率和数据路径设置自动计算数据速率。

image.png

因为每个块都有独立的时钟,所以可以在每个块的基础上指定采样率、时钟率、PL 速率和配置。

PL 时钟接口


所有四个片流的 AXI4-Stream 数据与来自 PL 的时钟同步,PL 的命名约定为 mX_axis_aclk,其中 X 代表 RF-ADC 瓦片编号。 此时钟必须处于 IP 内核配置屏幕上显示的所需 AXI4-Stream 时钟指定的频率。

RF-ADC 块还输出可供 PL 使用的时钟。 该输出时钟是 RF-ADC 采样时钟的分频版本,因此对其进行频率锁定。 此时钟具有 clk_adcX 的命名约定,其中 X 表示 RF-ADC 块编号。

接口 FIFO 溢出


通过接口FIFO 的数据速率必须在 RFADC 块运行期间保持恒定,PL 时钟和 RF-ADC 采样时钟域之间没有频率漂移。 如果这些域之间存在频率不匹配,则可能会发生 FIFO 溢出。 接口 FIFO 具有确定是否发生 FIFO 溢出的内置功能,使用 IP 中断机制将其标记到 PL。

溢出有两种类型,实际溢出和边际溢出。 实际溢出表明 FIFO 读/写指针重叠,这意味着数据没有在域之间安全传输,必须采取措施。 边际溢出是一个警告,表示 FIFO 读/写指针接近重叠。 正常操作期间不应发生溢出,如果观察到溢出,则表明 PL/PCB/IP 的时钟基础结构配置不正确。

同步


FIFO 为 RF-ADC 块提供灵活的数据和时钟接口。 但是,与所有双时钟 FIFO 一样,延迟可能会在一个 tile 和另一个 tile 之间变化。 虽然 tile 中的所有通道都具有相同的延迟,但某些应用可能需要使用多个 RF-ADC tile,并且需要在所有 RF-ADC 通道中匹配延迟。 这些应用程序可以使用多块同步 (MTS) 功能来实现这种块间同步。

RF-ADC 多频带操作


RF-ADC 可以配置为在多频带模式下操作。 这是输入模拟输入由上变频(混合)到不同载波频率的基带信号组成的地方。多个 DDC 模块用于下变频模拟输入以恢复单独的基带信号。

RF-ADC 多频段功能支持以下配置:

  • 每对2x 多频段实际数据。 一个 RF-ADC 模拟输入处于活动状态。 两个 RF-ADC 输出均启用。
  • 每对2x 多频段I/Q 数据。 两个 RF-ADC 输入都处于活动状态,一个用于 I,一个用于 Q。两个 RF-ADC 输出均启用。
  • 每个区块4x 多频段实际数据(仅限四路ADC 区块)。 一个 RF-ADC 模拟输入处于活动状态。 所有 4 个 RF-ADC 输出均启用。
  • 每块4x 多频带I/Q 数据(仅限四ADC 块)。 两个 RF-ADC 输入处于活动状态,一个用于 I,一个用于 Q。所有 4 个 RF-ADC 输出均启用。

当多频段关闭时,I 和 Q 输入直接通过多频段路由逻辑。

当多频段开启时,I 和 Q 输入被路由到 tile 中的多个 DDC 模块。

image.png

RF-ADC 多频段是通过将一个 RF-ADC 模拟模块的输出路由到多个 RF-ADC DDC 模块来实现的。 每个块处理一个数据带,并且可以从多个载波混合到基带。 下图中的 Quad ADC 块显示了这一点。

86011cda1db0e2ccdce852c7573346f4.png

RF-ADC Tile 0 (Tile_224) 配置为实际输入到 I/Q 输出模式。 ADC0 转换双频信号; ADC1 关闭。 顶部对可以配置为独立的 RF-ADC。 双频输出路由到 ADC0 和 ADC1 的 DDC 模块。 DDC 模块中的混频器可以配置为从输入数据中提取正确的频带。

RF-ADC Tile 1 (Tile_225) 配置为 4x 多频段 I/Q 输入到 I/Q 输出模式。 这里 ADC0 承载四波段 I 信号,ADC1 承载 Q 数据。 ADC2 和 ADC3 关闭。 RF-ADC 的输出被路由到所有四个 DDC 模块。 每个 DDC 都可以配置为从所需的频带中提取数据。

RF-ADC 奈奎斯特区操作


每个 RF-ADC 通道都可以对第一或第二奈奎斯特区的信号进行采样。 为确保 RFADC 性能最佳,RF-ADC 配置设置应指示预期的操作区域。

  • 第一奈奎斯特区定义为 0 和 Fs/2 之间的信号。
  • 第二奈奎斯特区定义为 Fs/2 和 Fs 之间的信号。

只要信号满足 RF-ADC 输入带宽要求,也可以使用其他奈奎斯特区 . 1、3、5、…区称为奇数区,2、4、…区称为偶数区。

RF-ADC IP 配置


RF-ADC 模块可以配置为多种模式。 Vivado IDE 的 IP 内核配置屏幕上提供了基本配置选项,并且可以使用 RFdc 驱动程序 API 配置高级操作模式。

RF-ADC 可用于四路或双路配置,具体取决于 tile。

双 RF-ADC 配置选项


双 RF-ADC 实输入到实输出


image.png

image.png

下图显示了一个双 RF-ADC,它具有实际数据输入到实际数据输出、1x 抽取、混频器被绕过并以 250 MHz AXI4-Stream 时钟运行。

image.png

双路 RF-ADC 实输入到 I/Q 输出


image.png

image.png

下图显示了一个双路 RF-ADC,其具有真实数据输入到 I/Q 数据输出、1x 抽取、启用混频器并以 500 MHz AXI4-Stream 时钟运行。

image.png


目录
相关文章
|
8月前
|
存储 缓存 网络协议
阿里云特惠云服务器99元与199元配置与性能和适用场景解析:高性价比之选
2025年,阿里云长效特惠活动继续推出两款极具吸引力的特惠云服务器套餐:99元1年的经济型e实例2核2G云服务器和199元1年的通用算力型u1实例2核4G云服务器。这两款云服务器不仅价格亲民,而且性能稳定可靠,为入门级用户和普通企业级用户提供了理想的选择。本文将对这两款云服务器进行深度剖析,包括配置介绍、实例规格、使用场景、性能表现以及购买策略等方面,帮助用户更好地了解这两款云服务器,以供参考和选择。
|
7月前
|
机器学习/深度学习 文字识别 监控
安全监控系统:技术架构与应用解析
该系统采用模块化设计,集成了行为识别、视频监控、人脸识别、危险区域检测、异常事件检测、日志追溯及消息推送等功能,并可选配OCR识别模块。基于深度学习与开源技术栈(如TensorFlow、OpenCV),系统具备高精度、低延迟特点,支持实时分析儿童行为、监测危险区域、识别异常事件,并将结果推送给教师或家长。同时兼容主流硬件,支持本地化推理与分布式处理,确保可靠性与扩展性,为幼儿园安全管理提供全面解决方案。
359 3
|
6月前
|
域名解析 应用服务中间件 Shell
使用nps配置内网穿透加域名解析
使用nps配置内网穿透加域名解析
798 77
|
8月前
|
人工智能 API 开发者
HarmonyOS Next~鸿蒙应用框架开发实战:Ability Kit与Accessibility Kit深度解析
本书深入解析HarmonyOS应用框架开发,聚焦Ability Kit与Accessibility Kit两大核心组件。Ability Kit通过FA/PA双引擎架构实现跨设备协同,支持分布式能力开发;Accessibility Kit提供无障碍服务构建方案,优化用户体验。内容涵盖设计理念、实践案例、调试优化及未来演进方向,助力开发者打造高效、包容的分布式应用,体现HarmonyOS生态价值。
506 27
|
8月前
|
监控 Shell Linux
Android调试终极指南:ADB安装+多设备连接+ANR日志抓取全流程解析,覆盖环境变量配置/多设备调试/ANR日志分析全流程,附Win/Mac/Linux三平台解决方案
ADB(Android Debug Bridge)是安卓开发中的重要工具,用于连接电脑与安卓设备,实现文件传输、应用管理、日志抓取等功能。本文介绍了 ADB 的基本概念、安装配置及常用命令。包括:1) 基本命令如 `adb version` 和 `adb devices`;2) 权限操作如 `adb root` 和 `adb shell`;3) APK 操作如安装、卸载应用;4) 文件传输如 `adb push` 和 `adb pull`;5) 日志记录如 `adb logcat`;6) 系统信息获取如屏幕截图和录屏。通过这些功能,用户可高效调试和管理安卓设备。
|
8月前
|
存储 弹性计算 安全
阿里云服务器ECS通用型规格族解析:实例规格、性能基准与场景化应用指南
作为ECS产品矩阵中的核心序列,通用型规格族以均衡的计算、内存、网络和存储性能著称,覆盖从基础应用到高性能计算的广泛场景。通用型规格族属于独享型云服务器,实例采用固定CPU调度模式,实例的每个CPU绑定到一个物理CPU超线程,实例间无CPU资源争抢,实例计算性能稳定且有严格的SLA保证,在性能上会更加稳定,高负载情况下也不会出现资源争夺现象。本文将深度解析阿里云ECS通用型规格族的技术架构、实例规格特性、最新价格政策及典型应用场景,为云计算选型提供参考。
|
8月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
825 29
|
8月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
326 4
|
8月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
8月前
|
移动开发 前端开发 JavaScript
从入门到精通:H5游戏源码开发技术全解析与未来趋势洞察
H5游戏凭借其跨平台、易传播和开发成本低的优势,近年来发展迅猛。接下来,让我们深入了解 H5 游戏源码开发的技术教程以及未来的发展趋势。

推荐镜像

更多
  • DNS
  • 下一篇
    oss云网关配置