python逻辑回归预测之信用卡逾期实战(附源码)

简介: python逻辑回归预测之信用卡逾期实战(附源码)

不同于线性回归是预测出来具体的值,逻辑回归本质上是分类问题,逻辑回归将值映射到(0,1)集合。


逻辑回归是根据现有数据对分类边界线建立回归公式,以此进行分类。逻辑回归在线性回归的基础上,通过引入sigmoid函数,将线性回归的输出值映射到(0,1)上,接下来使用阈值将结果转换成0或1就能够完成两类问题的预测。


问题描述:某银行搜集乐园用户贷款,收入和信用卡是否逾期的信息,使用这些数据建立一个能预测信用卡逾期情况的逻辑回归模型,使用梯度下降法确定模型参数,并绘图显示损失函数的变化过程。


数据部分示意图如下

1666430781625.jpg

初始数据可视化如下

1666430794987.jpg

经过逻辑回归后分界线可视化如下

1666430822632.jpg

损失函数可视化如下 可以看到随着迭代次数的增加损失函数一直在减小 直到收敛

1666430835652.jpg

源代码如下

import numpy as np
import pandas as pd
import matplotlib; matplotlib.use('TkAgg')
df=pd.read_csv(r"credit-overdue.csv")
print(df.head())
from matplotlib import  pyplot as plt
matplotlib.rcParams['font.family'] = 'SimHei'
matplotlib.rcParams['font.size'] = 10
matplotlib.rcParams['axes.unicode_minus']=False
plt.figure(figsize=(10,6))
map_size={0:20,1:100}
size=list(map(lambda x:map_size[x],df['overdue']))
plt.scatter(df['debt'],df['income'],s=size,c=df['overdue'],marker='v')
plt.show()
#step 3
def sigmoid(z):#逻辑函数 把值放缩到0 1之间
    sigmoid=1/(1+np.exp(-z))
    return  sigmoid
def loss(h,y):#损失函数
    loss=(-y*np.log(h)-(1-y)*np.log(1-h)).mean()
    return  loss
def gradient(X,h,y):#梯度下降
    gradient=np.dot(X.T,(h-y)/y.shape[0])
    return  gradient
#逻辑回归函数
def Logistic_Regression(x,y,lr,num_iter):
    intercept=np.ones((x.shape[0],1))
    x=np.concatenate((intercept,x),axis=1)
    w=np.zeros(x.shape[1])
    l_list=[]
    for i in range(num_iter):#梯度迭代下降
        z=np.dot(x,w)#线性函数
        h=sigmoid(z)
        g=gradient(x,h,y)
        w-=lr*g
        z=np.dot(x,w)
        h=sigmoid(z)
        l=loss(h,y)
        l_list.append(l)
    return l,w
x=df[['debt','income']].values
y=df['overdue'].values
lr=0.01
num_iter=30000
l_y=Logistic_Regression(x,y,lr,num_iter)
L=Logistic_Regression(x,y,lr,num_iter)
print("第一个为损失函数值 第二个为梯度下降")
print(l_y)
plt.figure(figsize=(10,6))
map_size={0:20,1:100}
size=list(map(lambda x:map_size[x],df['overdue']))
plt.scatter(df['debt'],df['income'],s=size,c=df['overdue'],marker='v')
x1_min,x1_max=df['debt'].min(),df['debt'].max()
x2_min,x2_max=df['income'].min(),df['income'].max()
xx1,xx2=np.meshgrid(np.linspace(x1_min,x1_max),np.linspace(x2_min,x2_max))
grid=np.c_[xx1.ravel(),xx2.ravel()]
probs=(np.dot(grid,np.array([L[1][1:3]]).T)+L[1][0]).reshape(xx1.shape)
plt.contour(xx1,xx2,probs,levels=[0],linewidths=1,colors='red')
plt.show()
'''
plt.plot([i for i in range(len(l_y))],l_y)
plt.xlabel("迭代次数")
plt.ylabel("损失函数")
plt.show()
'''
相关文章
|
4天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
6天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
20 4
|
5天前
|
机器学习/深度学习 数据可视化 数据处理
Python数据科学:从基础到实战
Python数据科学:从基础到实战
12 1
|
6天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
15 1
|
9天前
|
前端开发 API 开发者
Python Web开发者必看!AJAX、Fetch API实战技巧,让前后端交互如丝般顺滑!
在Web开发中,前后端的高效交互是提升用户体验的关键。本文通过一个基于Flask框架的博客系统实战案例,详细介绍了如何使用AJAX和Fetch API实现不刷新页面查看评论的功能。从后端路由设置到前端请求处理,全面展示了这两种技术的应用技巧,帮助Python Web开发者提升项目质量和开发效率。
21 1
|
9天前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
22 1
|
11天前
|
Linux 开发者 iOS开发
Python系统调用实战:如何在不同操作系统间游刃有余🐟
本文介绍了 Python 在跨平台开发中的强大能力,通过实际例子展示了如何使用 `os` 和 `pathlib` 模块处理文件系统操作,`subprocess` 模块执行外部命令,以及 `tkinter` 创建跨平台的图形用户界面。这些工具和模块帮助开发者轻松应对不同操作系统间的差异,专注于业务逻辑。
27 2
|
1天前
|
数据采集 存储 数据处理
探索Python中的异步编程:从基础到实战
【10月更文挑战第39天】在编程世界中,时间就是效率的代名词。Python的异步编程特性,如同给程序穿上了一双翅膀,让它们在执行任务时飞得更高、更快。本文将带你领略Python异步编程的魅力,从理解其背后的原理到掌握实际应用的技巧,我们不仅会讨论理论基础,还会通过实际代码示例,展示如何利用这些知识来提升你的程序性能。准备好让你的Python代码“起飞”了吗?让我们开始这场异步编程的旅程!
|
5天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
10天前
|
开发者 Python
探索Python中的装饰器:从入门到实战
【10月更文挑战第30天】本文将深入浅出地介绍Python中一个强大而有趣的特性——装饰器。我们将通过实际代码示例,一步步揭示装饰器如何简化代码、增强函数功能并保持代码的可读性。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往更高效编程的大门。