python协同过滤算法实现电影推荐(附源码)

简介: python协同过滤算法实现电影推荐(附源码)

本例中使用得是著名得电影数据集MovieLens-100数据集


MoviesLens数据集是实现和测试电影推荐最常用得数据集之一,包含943个用户为精选得1682部电影给出得100000个电影评分


主要文件如下1:u.data 2:u.item 3:u.user


1:查看用户/电影排名信息得代码如下

1666430464259.jpg

import  pandas as pd
heads=['user_id','item_id','rating','timestamp']
ratings=pd.read_csv(r'u.data',sep='\t',names=heads)
print(ratings)
print("用户数量",len(ratings))


2:查看导入的电影数据表


1666430426828.jpg

代码如下

import  pandas as pd
u_cols=['user_id','age','sex','occupation','zip_code']
users=pd.read_csv(r'u.data',sep='|',names=u_cols,encoding='latin-1')
print(users)
r_cols=['user_id','movie_id','rating','unix_timestamp']
ratings=pd.read_csv(r'u.data',sep='\t',names=r_cols,encoding='latin-1')
print(ratings)
m_cols=['movie_id','title','release_data','video_release_data','imdb_url']
movies=pd.read_csv(r'u.item',sep='|',names=m_cols,usecols=range(5),encoding='latin-1')
print(movies)


3:用协同过滤推荐算法进行电影推荐

image.png

image.png

image.png

误差评估如下

1666430336844.jpg

全部代码如下:

import  pandas as pd
import  numpy as np
from sklearn.metrics.pairwise import pairwise_distances
np.set_printoptions(suppress=True)  # 取消科学计数法输出
pd.set_option('display.max_rows', None) # 展示所有行
pd.set_option('display.max_columns', None) # 展示所有列
def predict(scoredata,similarity,type='user'):
    #基于物品得推荐
    if type=='item':
        predt_mat=scoredata.dot(similarity)/np.array([np.abs(similarity).sum(axis=1)])
    elif type=='user':
        #计算用户评分值 减少用户评分高低习惯影响
        user_meanscorse=scoredata.mean(axis=1)
        score_diff=(scoredata-user_meanscorse.reshape(-1,1))
        predt_mat=user_meanscorse.reshape(-1,1)+similarity.dot(score_diff)/np.array([np.abs(similarity).sum(axis=1)]).T
    return predt_mat
#读取数据
print('step 1 读取数据')
r_cols=['user_id','movie_id','rating','unix_timestamp']
scoredata=pd.read_csv(r'u.data',sep='\t',names=r_cols,encoding='latin-1')
print('数据形状',scoredata.shape)
#生成用户-物品评分矩阵
print('step2 生成 用户物品评分矩阵')
n_users=943
n_items=1682
data_matrix=np.zeros((n_users,n_items))
for line in range(np.shape(scoredata)[0]):
    row=scoredata['user_id'][line]-1
    col=scoredata['movie_id'][line]-1
    score=scoredata['rating'][line]
    data_matrix[row,col]=score
print('用户物品矩阵形状',data_matrix.shape)
#计算相似度
print('step3 计算相似度')
user_similaritry=pairwise_distances(data_matrix,metric='cosine')
item_similarity=pairwise_distances(data_matrix.T,metric='cosine')
print('user similarity',user_similaritry.shape)
print('item similartity',item_similarity.shape)
#进行相似度进行预测
print('step4 预测')
user_prediction=predict(data_matrix,user_similaritry,type='user')
item_perdiction=predict(data_matrix,item_similarity,type='item')
#显示推荐结果
print('step 5 显示推荐结果')
print('----------------')
print('ubcf预测形状',user_prediction.shape)
print('real answer\n',data_matrix[:5,5])
print('预测结果\n',user_prediction)
print('ibcf预测形状',item_perdiction.shape)
print('real answer\n',data_matrix[:5,:5])
print('预测结果\n',item_perdiction)
#性能评估
print('step 6 性能评估')
from sklearn.metrics import mean_squared_error
from math import sqrt
def rmse(predct,realNum):
    predct=predct[realNum.nonzero()].flatten()
    realNum=realNum[realNum.nonzero()].flatten()
    return sqrt(mean_squared_error(predct,realNum))
print('u-base mse=',str(rmse(user_prediction,data_matrix)))
print('m-based mse=',str(rmse(item_perdiction,data_matrix)))
相关文章
|
7天前
|
搜索推荐 算法 C语言
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
45 8
|
7天前
|
搜索推荐 算法 C语言
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
33 7
|
2天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
15 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
2天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
11 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
9 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
6天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
23 2
|
6天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
20 1
|
15天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
18 3
|
18天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
61 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
23天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)