Google Earth Engine(GEE)——2015-2019年100米分辨率的动态土地覆盖数据集(CGLS-LC100)

简介: Google Earth Engine(GEE)——2015-2019年100米分辨率的动态土地覆盖数据集(CGLS-LC100)

   哥白尼全球土地服务(CGLS)被指定为土地服务的一个组成部分,以运营一个多用途的服务组件,提供一系列关于全球范围内土地表面的状况和演变的生物地球物理产品。

100米分辨率的动态土地覆盖图(CGLS-LC100)是CGLS组合中的一个新产品,提供100米空间分辨率的全球土地覆盖图。CGLS土地覆盖产品提供了一个主要的土地覆盖方案。除了这些离散的类别,该产品还包括所有基本土地覆盖类别的连续实地层,为土地覆盖类型的植被/地面覆盖提供比例估计。这种连续的分类方案可以比标准分类方案更好地描述异质土地覆盖的区域,因此,可以根据应用用途进行调整(例如,森林监测、作物监测、生物多样性和保护、监测非洲的环境和安全、气候建模等)。

这些一致的土地覆盖图(v3.0.1)是为2015-2019年整个地球提供的,来源于PROBA-V 100米时间序列、高质量的土地覆盖训练点数据库和一些辅助数据集,在过去的几年中,一级精度达到80%。计划从2020年开始,通过使用哨兵时间序列提供年度更新。

也见。

Dataset Availability

2015-01-01T00:00:00 - 2019-12-31T23:59:59

Dataset Provider

Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/Landcover/100m/Proba-V-C3/Global")

Resolution

100 meters

Bands Table

Name Description Min Max Units
discrete_classification Land cover classification 0 200
discrete_classification-proba Quality indicator (classification probability) of the discrete classification 0 100 %
forest_type Forest type for all pixels with tree percentage vegetation cover bigger than 1 % 0 5
bare-coverfraction Percent vegetation cover for bare-sparse-vegetation land cover class 0 100 %
crops-coverfraction Percent vegetation cover for cropland land cover class 0 100 %
grass-coverfraction Percent vegetation cover for herbaceous vegetation land cover class 0 100 %
moss-coverfraction Percent vegetation cover for moss and lichen land cover class 0 100 %
shrub-coverfraction Percent vegetation cover for shrubland land cover class 0 100 %
tree-coverfraction Percent vegetation cover for forest land cover class 0 100 %
snow-coverfraction Percent ground cover for snow and ice land cover class 0 100 %
urban-coverfraction Percent ground cover for built-up land cover class 0 100 %
water-permanent-coverfraction Percent ground cover for permanent water land cover class 0 100 %
water-seasonal-coverfraction Percent ground cover for seasonal water land cover class 0 100 %
data-density-indicator Data density indicator for algorithm input data 0 100
change-confidence This layer is only provided for years after the BaseYear 2015. * 0 - No change. No change in discrete class between year and previous year detected. * 1 - Potential change. BFASTmon detected break in second half of NRT year - potential change. * 2 - Medium confidence. Imprint of urban, permanent water, snow or wetland OR change detected by BFAST but HMM model didn’t confirm this break in higher resolution OR change detected by BFASTmon in the first half of NRT year. * 3 - High confidence. BFAST detected a change and HMM confirmed this change in higher resolution. 0 3

Class Table: discrete_classification

Value Color Color Value Description
0 #282828 Unknown. No or not enough satellite data available.
20 #FFBB22 Shrubs. Woody perennial plants with persistent and woody stems and without any defined main stem being less than 5 m tall. The shrub foliage can be either evergreen or deciduous.
30 #FFFF4C Herbaceous vegetation. Plants without persistent stem or shoots above ground and lacking definite firm structure. Tree and shrub cover is less than 10 %.
40 #F096FF Cultivated and managed vegetation / agriculture. Lands covered with temporary crops followed by harvest and a bare soil period (e.g., single and multiple cropping systems). Note that perennial woody crops will be classified as the appropriate forest or shrub land cover type.
50 #FA0000 Urban / built up. Land covered by buildings and other man-made structures.
60 #B4B4B4 Bare / sparse vegetation. Lands with exposed soil, sand, or rocks and never has more than 10 % vegetated cover during any time of the year.
70 #F0F0F0 Snow and ice. Lands under snow or ice cover throughout the year.
80 #0032C8 Permanent water bodies. Lakes, reservoirs, and rivers. Can be either fresh or salt-water bodies.
90 #0096A0 Herbaceous wetland. Lands with a permanent mixture of water and herbaceous or woody vegetation. The vegetation can be present in either salt, brackish, or fresh water.
100 #FAE6A0 Moss and lichen.
111 #58481F Closed forest, evergreen needle leaf. Tree canopy >70 %, almost all needle leaf trees remain green all year. Canopy is never without green foliage.
112 #009900 Closed forest, evergreen broad leaf. Tree canopy >70 %, almost all broadleaf trees remain green year round. Canopy is never without green foliage.
113 #70663E Closed forest, deciduous needle leaf. Tree canopy >70 %, consists of seasonal needle leaf tree communities with an annual cycle of leaf-on and leaf-off periods.
114 #00CC00 Closed forest, deciduous broad leaf. Tree canopy >70 %, consists of seasonal broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods.
115 #4E751F Closed forest, mixed.
116 #007800 Closed forest, not matching any of the other definitions.
121 #666000 Open forest, evergreen needle leaf. Top layer- trees 15-70 % and second layer- mixed of shrubs and grassland, almost all needle leaf trees remain green all year. Canopy is never without green foliage.
122 #8DB400 Open forest, evergreen broad leaf. Top layer- trees 15-70 % and second layer- mixed of shrubs and grassland, almost all broadleaf trees remain green year round. Canopy is never without green foliage.
123 #8D7400 Open forest, deciduous needle leaf. Top layer- trees 15-70 % and second layer- mixed of shrubs and grassland, consists of seasonal needle leaf tree communities with an annual cycle of leaf-on and leaf-off periods.
124 #A0DC00 Open forest, deciduous broad leaf. Top layer- trees 15-70 % and second layer- mixed of shrubs and grassland, consists of seasonal broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods.
125 #929900 Open forest, mixed.
126 #648C00 Open forest, not matching any of the other definitions.
200 #000080 Oceans, seas. Can be either fresh or salt-water bodies.

Class Table: forest_type

Value Color Color Value Description
0 #282828 Unknown
1 #666000 Evergreen needle leaf
2 #009900 Evergreen broad leaf
3 #70663E Deciduous needle leaf
4 #A0DC00 Deciduous broad leaf
5 #929900 Mix of forest types

image 属性:

Name Type Description
discrete_classification_class_names List of Strings Land cover class names
discrete_classification_class_palette List of Strings Land cover class palette
discrete_classification_class_values List of Ints Value of the land cover classification.
forest_type_class_names List of Strings forest cover class names
forest_type_class_palette List of Strings forest cover class palette
forest_type_class_values List of Ints forest cover class values

数据引用:

Buchhorn, M. ; Lesiv, M. ; Tsendbazar, N. - E. ; Herold, M. ; Bertels, L. ; Smets, B. Copernicus Global Land Cover Layers—Collection 2. Remote Sensing 2020, 12Volume 108, 1044. doi:10.3390/rs12061044

image.png

代码:

var dataset = ee.Image("COPERNICUS/Landcover/100m/Proba-V-C3/Global/2019")
.select('discrete_classification');
Map.setCenter(-88.6, 26.4, 1);
Map.addLayer(dataset, {}, "Land Cover");


相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2556 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
232 0
|
7月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
607 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
7月前
|
API Go 网络架构
GEE Colab——如何从本地/Google云盘/Google Cloud Storage (GCS)上传和下载
GEE Colab——如何从本地/Google云盘/Google Cloud Storage (GCS)上传和下载
341 4
|
7月前
|
机器学习/深度学习 存储 人工智能
GEE Colab——初学者福音快速入门 Google Colab(Colaboratory)
GEE Colab——初学者福音快速入门 Google Colab(Colaboratory)
244 3
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
94 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
154 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
78 0
|
7月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
275 0
|
7月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
137 0