机器学习-西瓜书、南瓜书第五章

简介: 神经网络起源于生物神经元的生物原理,生物神经元通常包括细胞体、树突和轴突等部分。其中,树突适用于接受输入信息,突触对输入信息进行处理,达到一定条件后由轴突产生输出,此时神经元表现为激活兴奋的状态。

神经网络


1.什么是神经网络

神经网络起源于生物神经元的生物原理,生物神经元通常包括细胞体、树突和轴突等部分。其中,树突适用于接受输入信息,突触对输入信息进行处理,达到一定条件后由轴突产生输出,此时神经元表现为激活兴奋的状态。

image.png

457e21a2ac82ccb207e2f6c56dcb2db7_watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2thcnJ5X3p6ag==,size_16,color_FFFFFF,t_70.jpg

5e6195801e073dfdffa21215ffd7c08d_watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2thcnJ5X3p6ag==,size_16,color_FFFFFF,t_70.jpg

5e6195801e073dfdffa21215ffd7c08d_watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2thcnJ5X3p6ag==,size_16,color_FFFFFF,t_70.jpg


b7cc28693a381bc811416e4bc08670aa_watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2thcnJ5X3p6ag==,size_16,color_FFFFFF,t_70.jpg

以下为参考链接导图:西瓜书自学笔记分享第五章 - 知乎


8c54c5a66f0052d010226f51030f0eba_535e464e96c98ec7e4457265c1d538a4.png

0ee7bb26059d4e24e175c9b1cc17916d_e84bef0ac8a3b1c7f0a8c5934680727e.png

171d6a41df3cbb4e66a8ccf6563d1c65_588f83fc8ef61f2e589700e27ce0b84d.png





目录
相关文章
|
机器学习/深度学习 算法
经典机器学习系列(六)【集成学习】之周志华西瓜书-AdaBoost算法证明解析
经典机器学习系列(六)【集成学习】之周志华西瓜书-AdaBoost算法证明解析
167 0
|
7月前
|
机器学习/深度学习 存储 算法
机器学习(西瓜书)简答题总结
机器学习(西瓜书)简答题总结
60 0
|
机器学习/深度学习 算法 数据挖掘
周志华《机器学习》西瓜书精炼版笔记来了!16 章完整版
周志华《机器学习》西瓜书精炼版笔记来了!16 章完整版
1929 0
周志华《机器学习》西瓜书精炼版笔记来了!16 章完整版
|
机器学习/深度学习 算法
机器学习-西瓜书、南瓜书第六章
支持向量机(Support Vector Machine),简称SVM,是一种经典的二分类模型,属于监督学习算法。
124 0
机器学习-西瓜书、南瓜书第六章
|
机器学习/深度学习 算法
机器学习-西瓜书、南瓜书第四章
基于树结构来进行决策,体现人类在面临决策问题时一种很自然的处理机制
84 0
机器学习-西瓜书、南瓜书第四章
|
机器学习/深度学习 数据采集 算法
机器学习-西瓜书、南瓜书第三章
回归任务最常用的性能度量是均方误差,因为均方误差有比较好的几何意义,对应了最常用的**“欧氏距离”,最小二乘法就是基于均方误差进行模型求解的。 求解均方误差最小化的过程称为参数估计
120 0
机器学习-西瓜书、南瓜书第三章
|
机器学习/深度学习 算法 数据挖掘
机器学习-西瓜书第一、二章
数据集:所有数据的集合 训练集:训练样本的集合 属性(特征):某事物或对象在某方面表现的性质 属性值:属性的取值 属性空间/样本空间/输入空间:属性张成的空间 泛化能力:学得模型适用于新样本的能力(泛化能力强更好地适用于样本空间)
179 0
机器学习-西瓜书第一、二章
|
机器学习/深度学习 算法
机器学习【西瓜书/南瓜书】--- 第2章模型评估与选择(下)(学习笔记+公式推导)
本博客为博主在学习 机器学习【西瓜书 / 南瓜书】过程中的学习笔记,每一章都是对《西瓜书》、《南瓜书》内容的总结和提炼笔记,博客可以作为各位读者的辅助思考,也可以做为读者快读书籍的博文,本博客对西瓜书所涉及公式进行详细的推理以及讲解,本人认为,不推导公式所学得的知识是没有深度的,是很容易忘记的,有些公式推导起来并不复杂,只是被看似复杂的数学表达式所“吓唬”,希望大家拿上纸笔,跟着博主一起学习,一起推导。
231 0
机器学习【西瓜书/南瓜书】--- 第2章模型评估与选择(下)(学习笔记+公式推导)
|
机器学习/深度学习 算法 数据挖掘
机器学习【西瓜书/南瓜书】--- 第1章绪论(学习笔记+公式推导)
本博客为博主在学习 机器学习【西瓜书 / 南瓜书】过程中的学习笔记,每一章都是对《西瓜书》、《南瓜书》内容的总结和提炼笔记,博客可以作为各位读者的辅助思考,也可以做为读者快读书籍的博文,本博客对西瓜书所涉及公式进行详细的推理以及讲解,本人认为,不推导公式所学得的知识是没有深度的,是很容易忘记的,有些公式推导起来并不复杂,只是被看似复杂的数学表达式所“吓唬”,希望大家拿上纸笔,跟着博主一起学习,一起推导。
244 0
机器学习【西瓜书/南瓜书】--- 第1章绪论(学习笔记+公式推导)
|
7月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
248 14